1.解:连接IE,EF,IK

设S△BIH为x1,S四边形IJED为y1,S△BDI为z1,S△AKG为z2,S四边形KGFJ为y2,S△AKH为x2
易知x1+y2=x2+y1,x1+z1=x2+z2,z1+y1=z2+y2
解得x1=x2.,y1=y2,z1=z2,
在四边形BIKA中,S△BIH=S△AKH,∴S△BKI=S△AKI,从而易证BA//IK,同理可得,AB//IK//EF
根据比例线段可得EF=AB/4,故S△EFC=S△ABC/16=1/16,也可得S△EFJ=S△ABJ/16,可设S△EFJ面积为a,则有1-(a+16a)=1-a-1/16,解得a=3/80
同理,可根据比例线段求得S△ABJ=3/5,S△BJE=3/20,
在△BIE和△ADE中,可知(1/2-2z1)/(4+1)+3z1=3/20,解得z1=1/52,从而得z1=z2=1/52,并且可求得y1=y2=17/130,S△BIE:S△IJE=BI:IJ=5:8,故S四边形ABIK为S△ABJ-64/169S△ABJ=63/169,S△ABI=3/13
设S△ABH为b,则S△HIK=64b/169
根据比例线段,可求出S△AIK= S△ABI*(8/13)=24/169,故S△ABI-S△AIK=b-63b/169=15/169,解得b=1/7,则S△HIK为64/1183,
根据比例线段易求得S△HIJ=S△ABJ*(64/169)=192/845
∴S四边形HIJK=S△HIJ+S△HIK=64/1183+192/845=128/455
∴正解为S四边形HIJK=128/455