按:这是加州大学Berkeley分校伍鸿熙教授写给学生们的话,今天早上在逸夫馆又读了一遍,深受感动,献给大家。
“你们的事业的成长,应该像一棵树的成长一样。应该是顺其自然,无间断和全面的。我希望你们的根能够在这个学院的肥沃土地下面尽量深入,以使你们的树干长的既粗且壮。这样,将来无论树叶无论多么茂盛丰满,也永远不会有水分供应不暇的毛病。在上空将不时有狂风大雨,也会有行雷闪电。所以切勿长得太快太高。”
以上的一段话,是当代英国演员罗伦士奥利维亚在1947年Old Vic戏剧学院开幕典礼中,向学生致词的一部分。这几句话对你们是有特殊意义的。应为这本书是一本很初步的。如果你们有意细读这本书的话,则最少要弄清楚从这本书中你们能够得到什么。目前一般研究生心目中,最迫切的问题似乎是:有没有一个可以写一篇文章的小题目?因此我要先此声明:这本书不讨论这一类的小题目。我写这本书的原意,只是希望能使“你们的根尽量向下深入”。以后是否开枝发叶,就只能看你们自己的努力和天赋。书内所讨论的题目,都是一般性的和基础性的,而且也是任何一个几何学家所熟悉的。要是你们能够好好掌握着几个基本性的概念,并且在将来能对几何学有一个比较全面的理解则日后自然能够挑一些有意义的大题目来做。急功好利,只顾眼前的收获,和只找易做的小题目来写文章,这都不是一个数学工作者应有的态度。这本书应该是你们向前迈进的踏脚石之一。我希望你们能够很快就能超过这本书的范围。
每一本书的作者都有一点和一个魔术师相同的地方,就是希望观众或读者所看见的一切,刚好也是他希望他的读者或观众所看到的一切。那么在我心目中,幻想你们能够从这本书中看到的是什么呢?
第一,你们会了解书内的定义和定理既都是人为的,又同时是合理的。也许你们认为一本书要写得高深莫测,才能显出作者的学问渊博,但是我却希望你们会觉得书中的一切,不但是理所当然的,而且是容易得只要肯花一点功夫就可以自己做出来的。要做到这一点,除了一般的“定义->定理->证明”基本形式以外,我设法多加一些按语来说清楚每个主要定义和主要定理的来龙去脉和直观意义。另一方面我也要指出,书中的概念和结果所以被认为是基本性的,并不是因为某某权威说过是如此如此,而是因为经过时间的考验后,发现确切是如此的。就是说,从经验的总结,我们现在知道这些概念和定理是有用和必需的。所以一个初学者应该致力于探求所学的为什么是有用的和必需的,否则不能对所学有一个全面的了解。这种治学态度,其实不单是适用于数学上,而且是适用于一切学问的领域上的,包括社会科学在内。
其次,我希望你们能够把握全书的要点,同时也能把握每个定理,每个证明,和每个概念的要点。一个好的数学书应该不同于一本字典。在后者当中每一个字都占有同等地位。但是如果说这本书内无数定义,定理和证明都是同样重要的,就未免荒谬无稽了。比方说,弧长的二次变分公式只是一个一般性的技巧的结果,要点在于弄清楚如何把它应用于具体的情况,而不在于探讨这个公式本身的深度或者研究这个公式的推导。所以不应该只算出这个公式而不给应用,更不应该把这个公式当作主要定理之一。又比如说,Synge定理的证明看来是相当累赘的。但是从一个很直观的的事实作出发点,就是“任何一个非单连通的紧致黎曼流形上必存在一个非同伦于零的最短闭曲线”,则其他一切都是顺理成章的了。
所以我希望你们养成一个习惯,总要问:这本书的要点何在?这一章的要点何在?这个证明的要点何在?能找到所有这些问题的答案,才能说有真正的了解。
最后,我希望你们能够完全以直观的眼光去了解这本书的内容。所有数学书都是充满了技术性的术语的,因为为了要表达清楚,作者毫无选择的余地。但是一个数学工作者的思考,大部分时间是靠直观(甚至是过分简化的直观)的想法来向前推进的。在几何学上这一点尤其是重要。所以书内这一类直观的讨论,比其他的数学课本会多一些。也许你们还迷信所谓的“数学严格性”,以为数学上最重要的事是每一步推论的正确性。这个论点,相当于说鲁迅文章的好处,主要是每句话都写得很通顺。我希望你们不会犯这个“见小不见大”的毛病。
“你们的事业的成长,应该像一棵树的成长一样。应该是顺其自然,无间断和全面的。我希望你们的根能够在这个学院的肥沃土地下面尽量深入,以使你们的树干长的既粗且壮。这样,将来无论树叶无论多么茂盛丰满,也永远不会有水分供应不暇的毛病。在上空将不时有狂风大雨,也会有行雷闪电。所以切勿长得太快太高。”
以上的一段话,是当代英国演员罗伦士奥利维亚在1947年Old Vic戏剧学院开幕典礼中,向学生致词的一部分。这几句话对你们是有特殊意义的。应为这本书是一本很初步的。如果你们有意细读这本书的话,则最少要弄清楚从这本书中你们能够得到什么。目前一般研究生心目中,最迫切的问题似乎是:有没有一个可以写一篇文章的小题目?因此我要先此声明:这本书不讨论这一类的小题目。我写这本书的原意,只是希望能使“你们的根尽量向下深入”。以后是否开枝发叶,就只能看你们自己的努力和天赋。书内所讨论的题目,都是一般性的和基础性的,而且也是任何一个几何学家所熟悉的。要是你们能够好好掌握着几个基本性的概念,并且在将来能对几何学有一个比较全面的理解则日后自然能够挑一些有意义的大题目来做。急功好利,只顾眼前的收获,和只找易做的小题目来写文章,这都不是一个数学工作者应有的态度。这本书应该是你们向前迈进的踏脚石之一。我希望你们能够很快就能超过这本书的范围。
每一本书的作者都有一点和一个魔术师相同的地方,就是希望观众或读者所看见的一切,刚好也是他希望他的读者或观众所看到的一切。那么在我心目中,幻想你们能够从这本书中看到的是什么呢?
第一,你们会了解书内的定义和定理既都是人为的,又同时是合理的。也许你们认为一本书要写得高深莫测,才能显出作者的学问渊博,但是我却希望你们会觉得书中的一切,不但是理所当然的,而且是容易得只要肯花一点功夫就可以自己做出来的。要做到这一点,除了一般的“定义->定理->证明”基本形式以外,我设法多加一些按语来说清楚每个主要定义和主要定理的来龙去脉和直观意义。另一方面我也要指出,书中的概念和结果所以被认为是基本性的,并不是因为某某权威说过是如此如此,而是因为经过时间的考验后,发现确切是如此的。就是说,从经验的总结,我们现在知道这些概念和定理是有用和必需的。所以一个初学者应该致力于探求所学的为什么是有用的和必需的,否则不能对所学有一个全面的了解。这种治学态度,其实不单是适用于数学上,而且是适用于一切学问的领域上的,包括社会科学在内。
其次,我希望你们能够把握全书的要点,同时也能把握每个定理,每个证明,和每个概念的要点。一个好的数学书应该不同于一本字典。在后者当中每一个字都占有同等地位。但是如果说这本书内无数定义,定理和证明都是同样重要的,就未免荒谬无稽了。比方说,弧长的二次变分公式只是一个一般性的技巧的结果,要点在于弄清楚如何把它应用于具体的情况,而不在于探讨这个公式本身的深度或者研究这个公式的推导。所以不应该只算出这个公式而不给应用,更不应该把这个公式当作主要定理之一。又比如说,Synge定理的证明看来是相当累赘的。但是从一个很直观的的事实作出发点,就是“任何一个非单连通的紧致黎曼流形上必存在一个非同伦于零的最短闭曲线”,则其他一切都是顺理成章的了。
所以我希望你们养成一个习惯,总要问:这本书的要点何在?这一章的要点何在?这个证明的要点何在?能找到所有这些问题的答案,才能说有真正的了解。
最后,我希望你们能够完全以直观的眼光去了解这本书的内容。所有数学书都是充满了技术性的术语的,因为为了要表达清楚,作者毫无选择的余地。但是一个数学工作者的思考,大部分时间是靠直观(甚至是过分简化的直观)的想法来向前推进的。在几何学上这一点尤其是重要。所以书内这一类直观的讨论,比其他的数学课本会多一些。也许你们还迷信所谓的“数学严格性”,以为数学上最重要的事是每一步推论的正确性。这个论点,相当于说鲁迅文章的好处,主要是每句话都写得很通顺。我希望你们不会犯这个“见小不见大”的毛病。