皮亚诺(Peano,1858—1932)系意大利数学家,他提出五条自然数的性质,通常把这五条性质叫做自然数的皮亚诺公理。
(1)“1”是自然数;
(2)每一个确定的自然数a,都有一个确定的后继数a′,a′也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
(3)如果b、c都是自然数a的后继数,那么b=c;
(4)1不是任何自然数的后继数;
(5)任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n′也真,那么,命题对所有自然数都真。
证明:
1+1的后继数是1的后继数的后继数,既是3
2的后继数是3
根据皮亚诺公理(4)
可得:1+1=2
(1)“1”是自然数;
(2)每一个确定的自然数a,都有一个确定的后继数a′,a′也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
(3)如果b、c都是自然数a的后继数,那么b=c;
(4)1不是任何自然数的后继数;
(5)任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n′也真,那么,命题对所有自然数都真。
证明:
1+1的后继数是1的后继数的后继数,既是3
2的后继数是3
根据皮亚诺公理(4)
可得:1+1=2