一、研究晶体结构的重要意义
自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。
用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。
结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。
二、晶体的通性和分类
在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位——晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。
与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。
自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。
用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。
结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。
二、晶体的通性和分类
在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位——晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。
与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。