复分解反应吧 关注:73贴子:2,155
  • 4回复贴,共1

晶体结构相关知识

收藏回复

  • 219.141.5.*
一、研究晶体结构的重要意义

  自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。

  用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。

 

  结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。

二、晶体的通性和分类

  在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位——晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。

 

  与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。



1楼2006-09-20 22:48回复
    • 219.141.5.*

     

      接着劳厄等人又以硫化锌、铜、氯化钠、黄铁矿、荧石和氧化亚铜等立方晶体进行实验,都得到了衍射图。于是,晶体X射线衍射效应被发现了。这一重大发现一举解决了三大问题,开辟了两个重要研究领域。第一,它证实了X射线是一种波长很短的电磁波,可以利用晶体来研究X射线的性质,从而建立了X射线光谱学;并且对原子结构理论的发展也起了有力的推动作用,1913年莫斯莱定律的建立就是一例。第二,它雄辩地证实了几何晶体学提出的空间点阵假说,晶体内部的原子、离子、分子等确实是作规则的周期性排列,使这一假说发展为科学理论。第三,它使人们可利用X射线晶体衍射效应来研究晶体的结构,根据衍射方向可确定晶胞的形式和大小,根据衍射强度可确定晶胞的内容(原子、离子、分子的分布位置),这就导致了一种在原子——分子水平上研究化学物质结构的重要实验方法——X射线结构分析(即X射线晶体学)的诞生。这门新科学后来对化学的各分支以及材料学、生物学等都产生了深远的影响。由于这一发现,劳厄于1914年被授予诺贝尔物理学奖。

     

      在上述劳厄发现的基础上,英国人布拉格父子以及莫斯莱和达尔文(Darwin.C.G.1887-1962)为X射线晶体结构分析的建立作了大量工作,其中特别是W.L.布拉格贡献最大。布拉格父子因此共同获得1915年诺贝尔物理学奖。几十年中,在X射线光谱学和X射线晶体结构分析两方面做出卓越贡献,从而获得诺贝尔物理化学奖或生理医学奖的学者,竟超过10人!

     

      应用X射线晶体结构分析方法于化学物质的结构研究,使现代结晶化学迅速兴起。其中关于无机物结晶化学的发展,本章在讨论离子晶体和金属晶体时作了介绍,它对有机结晶化学的发展,对蛋白质、核酸等生物高分子结构的研究,也都起了巨大作用。

     

      自然科学发展证明:在不同学科的接触点上往往是科学发展的新的生长点,常可取得重大成果。几何晶体学、X射线晶体学和结晶化学的发展又一次生动地证明了这一点。
    


    3楼2006-09-20 22:48
    回复
      d


      禁言 |4楼2006-09-21 22:57
      回复
        • 61.144.83.*
        都没学到


        5楼2008-07-25 21:26
        回复
          石英晶体谐振器很多时候也简称“晶体” 或“水晶”(用户很多称其“晶振”、“振子”是欠准确的),它一般是从人造合成的石英晶体块状或棒状材料中,按定轴方位来切割研磨出的石英晶片,经金属电极加工并被装在支架上作成晶体振子,再经外壳焊接封装在盒子内而制成的。根据其产品指标参数及加工工艺,一般可将其分为普通晶体和精密晶体两类,前者普遍应用于用户整机或板卡的振荡电路或滤波电路中,后者主要应用于精密的晶体振荡器和晶体滤波器上;根据其外壳盒型,又将其分为许多型号,详见后述。   
          1、晶体材料  
                现代的晶体产品生产基本都是采用人造合成的石英晶体(SiO2)材料,其材料单体成块状或棒状。对晶体材料的综合评价通常使用Q值(非直测指标)来标示,Q值越高,其制成的晶体产品品质才会更好,精密晶体都是采用高Q值的材料制造的。  
          2、切型  
                指晶片相对于石英晶体结晶轴(物理结构)的切割取向。由于石英晶体是各向异性体,故不同方法、角度、精度切割的晶片,其频率温度特性、使用频率范围以及等效电路的各项参数也有所不同。晶体产业生产中主要选用的切割类型有AT、BT、SC等切型,其中AT切型被大多数晶体产品制造采用;SC切型因其优异的频率温度特性和老化特性,而在高精密晶体的制造中被优先采用,但遗憾的是其工艺加工难度很大,成本极高。  
          3、晶片  
                指切割加工成一定几何形状、尺寸并相对结晶轴有一定取向的压电体。晶片的设计加工质量直接影响晶体成品的质量,晶体科技通过技术人员多年的经验积累,在晶片设计与表面处理上对晶片质量进行控制;同时选用经线切割和激光两次校角的晶片,来保证精密晶体所要求的晶片切割精度。  
          4、电极   
                指与晶片表面接触或接近的导电膜或导电板,通过它给晶片施加电场。普通晶体的电极现在一般采用纯银,精密晶体根据需要采用金、铝等材料,以及一些辅助性特殊材料;电极的制备通常采用真空镀膜的方式。  
          5、晶体盒  
               指保护晶体振子和支架的外壳。将晶体振子装联在支架上的“晶体谐振件”通过专用焊接设备封装在外壳内,即完成了晶体谐振器的制造。  
                晶体盒型即外壳的外形尺寸规范,其尺寸确定了它要容纳的振子的最大尺寸。这最大尺寸限制了每种晶体盒频率范围的下限,也限制了机械强度、再现性以及等效电路参数的选择。注意:晶体元件特性对所承受的振动和冲击是敏感的,甚至是破坏性的。  
                晶体盒型是目前晶体元件型号分类的主要标准。就有引线的金属盒晶体元件而言,国际市场上流行的盒型,其命名是参照美国的标准,主要有HC-49/U、HC-49/T、HC-49/US、UM-1、UM-5等;在国内的晶体谐振器型号分类,也有采用原电子部颁布标准的,如JA5、JA8、JA10等,但其用法已较少。  
          6、基频或泛音晶体元件  
                振子设计工作在给定振动模式最低阶次上的晶体元件称为基频晶体,而工作在比最低阶次要高的阶次上的晶体元件也就称为泛音晶体,泛音有三次、五次、七次、九次、十一次等,一般采用三次、五次、七次,更高次的泛音晶体生产已不好控制。对于一个晶体元件的设计,给定其振动模式,它的频率即由晶片的方位、尺寸确定,而振动模式取决于使晶片与电路联系在一起的压电效应,特别注意:同样一个频点的晶体,采用基频或者泛音方式,其在电路应用上所反映的特性是不同的。 
          深圳市晶科鑫实业有限公司
          地址:广东省深圳市福田区天安数码城创新科技广场Ⅱ期东座1805
          电话:86-755-88352820
          传真:86-755-88353718
          网页:http://www.q-crystal.com
                http://www.q-crystal.com.cn
          邮箱:sjk@q-crystal.com


          禁言 |6楼2009-10-15 14:57
          回复