已知条件
{
因为对数底和幂函数底相同,power(2,log(x,2))=x
若对数底与幂函数底互为倒数: power(0.5,log(x,2))=1/x
}
现有以下公式:
power(0.33,log(x,10))
对数和幂函数理论上可通过换底,使得与两者的底互为倒数,此数假设为A
则上式可变型为:
power(1/A,log(x,A))
此时改式子可简化为,1/x,此结论肯定是错误的,但不知过程中哪步出了问题?求解,谢谢。
{
因为对数底和幂函数底相同,power(2,log(x,2))=x
若对数底与幂函数底互为倒数: power(0.5,log(x,2))=1/x
}
现有以下公式:
power(0.33,log(x,10))
对数和幂函数理论上可通过换底,使得与两者的底互为倒数,此数假设为A
则上式可变型为:
power(1/A,log(x,A))
此时改式子可简化为,1/x,此结论肯定是错误的,但不知过程中哪步出了问题?求解,谢谢。