将函数y=e^x、y=sinx、y=cosx用幂级数展开,有
e^x=exp(x)=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…+x^n/n!+… <1>
sinx=x-x^3/3!+x^5/5!-x^7/7!+……+(-1)^(k-1)*x^(2k-1)/(2k-1)!+…… <2>
cosx=1-x^2/2!+x^4/4!-x^6/6!+……+(-1)^k*x^(2k)/(2k)!+…… <3>
将<1>式中的x换为ix,得到<4>式;
将i*<2>+<3>式得到<5>式。比较<4><5>两式,知<4>与<5>恒等。
于是我们导出了e^ix=cosx+isinx,
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
