北辰羲吧 关注:51贴子:798

回复: 《万物简史》.by比尔·布莱森(美)

只看楼主收藏回复


第五章 敲石头的人们(3)
  即使在从事严肃的科学活动的时候,他的方式一般来说也是怪怪的。有一次,巴克兰半夜里于兴奋之中把他的太太推醒,大叫一声:"天哪,我认为,化石上的脚印肯定是乌龟的脚印。"夫妻俩穿着睡衣急匆匆地来到厨房。巴克兰太太和了面团,铺在那张桌上,巴克兰牧师拿来家里养的乌龟。他们把乌龟往面团上一扔,赶着它往前走。他们高兴地发现,它的脚印果然和巴克兰一直在研究的化石上的脚印完全一致。查尔斯·达尔文认为巴克兰是个小丑--这是他的原话--而莱尔却似乎觉得他对自己很有启发,还很喜欢他,1824年和他一块儿去了苏格兰。就是在那次苏格兰之行以后,莱尔决定放弃律师职业,把全部时间投入了地质学。
  莱尔近视得厉害,在一生的大部分时间里痛苦地眯着眼睛,因此露出一副愁眉苦脸的样子.(最后,他完全丧失了视力。)他还有一个有点古怪的地方,当他想得出神的时候,他会在家具上摆出难以想像的姿势--要么横在两张椅子上,要么(用他的朋友达尔文的话来说)"头枕着椅子面,身体伸得笔直"。一旦陷入沉思,他往往会慢慢地从椅子上滑下来,臀部几乎贴着地板。莱尔一生中的惟一工作是在1831-1833年期间当过伦敦大学国王学院的地质学教授。就是在这段时间里,他写出了《地质学原理》,并在1831-1833年期间分3卷出版。这部书在许多方面巩固和阐述了一代人之前由赫顿首先提出的见解。(虽然莱尔从来没有读过赫顿作品的原文,但他怀着浓厚的兴趣研究过普莱费尔的改写本。)  在赫顿时代和莱尔时代之间,地质学界发生了一场新的争论。它在很大程度上取代了过去的水成论与火成论之争,而又往往交混在一起。新的战斗成为灾变论和均变论之争。给一场重要而又旷日持久的争论起这样的名字,似乎有点儿不够味儿。灾变论者--顾名思义--认为,地球是由突发的灾难性事件形成的--主要是洪水。这就是人们常常把灾变论和水成论互相混淆的原因。灾变论尤其迎合巴克兰这样的教士的心理,这样他们可以把《圣经》里诺亚时代的洪水纳入严肃的科学讨论。均变论者恰恰相反,认为地球上的变化是逐渐形成的,几乎所有的地质变化过程都是缓慢的,都要经历漫长的时间。最先提出这种见解的与其说是莱尔,不如说是赫顿,但大多数人读的是莱尔的作品,因此在大多数人的脑海里,无论是当时还是现在,他成了近代地质学之父。
  莱尔认为,地球的变迁是一贯的,缓慢的--过去已经发生过的一切都可以用今天仍在发生的事情来解释。莱尔和他的信徒们不但瞧不起灾变论,而且对它深恶痛绝。灾变论者认为,绝种是一系列过程的组成部分,在此过程中,动物不断灭亡,被新的动物取而代之--博物学家T.H.赫胥黎把这种看法挖苦地比做是"惠斯特牌戏里的一连串胜局,到了最后,打牌的人推翻桌子,要求换一副新牌"。以这种方法来解释未知的事物未免过于俗套。"从来没有见过比这样的一种教条更蓄意助长懒汉精神,更削弱人们的好奇心的了。"莱尔嗤之以鼻地说。
  莱尔的失误并不算少。他没有令人信服地解释山脉是怎么形成的,没有看到冰河是个变化的动因。他不愿意接受阿加西斯关于冰期的观点--他轻描淡写地将其称之为"地球制冷"--坚信"在最古老的化石床里会发现"哺乳动物。他拒绝接受关于动物和植物突然死亡的看法,认为所有主要的动物群体--哺乳动物、爬行动物、鱼类等等--自古以来一直同时存在。在这些问题上,最后证明他是完全错误的。
  然而,莱尔的影响你几乎怎么说也不会过分。《地质学原理》在他生前出了12版;直到20世纪,书里包含的一些观点依然被地质学界奉为圭臬。达尔文乘"猎犬"号环球航行途中还随身带着一本《地质学原理》,而且是该书的第1版。他后来写道:"《原理》的最大优点在于它改变了一个人的整个思想状态;因此,当见到一样莱尔从没有见到过的东西的时候,你在一定程度上是以他的眼光来看的。"总之,他差不多把莱尔看做是个神,就像他那一代人的许多人一样。20世纪80年代,当地质学家不得不摈弃他的一部分理论,以适应关于绝种的撞击理论的时候,他们简直痛苦得要命。这充分说明了莱尔的影响之大。不过,那是后话了。
  与此同时,地质学有大量的分类工作要做,这项工作不是什么都一帆风顺的。从一开始,地质学家就想把岩石按其形成的时期来进行分类,但在怎么划分时期的问题上经常发生激烈的争论--而且是一场旷日持久的争论,后来被称之为"泥盆纪大争论"。剑桥大学的亚当·塞奇威克断言有一层岩石是寒武纪的,而罗德里克·默奇森认为它完全属于志留纪,争论于是就发生了。争论持续了好多年,而且越来越激烈。"巴谢是个下流痞子。"默奇森在给一位朋友的信中气呼呼地说。
  在《泥盆纪大争论》一书里,马丁·J.S.鲁迪克极好而又有些沮丧地描述了这场争论。只要瞥一眼该书各章的标题,就可以知道一点上述感情的强烈程度。开头几章的标题的语气倒还温和,比如《绅士们的辩论舞台》和《破译杂砂岩之谜》,但接着就是《捍卫杂砂岩与攻击杂砂岩》、《指摘与反驳》、《散布恶毒的谣言》、《韦弗撤回邪说》、《杀杀乡下人的气焰》(惟恐你还怀疑这不是一场战争)、《默奇森发起莱茵兰战役》等等。争论于1879年得以解决,办法很简单,在寒武纪和志留纪中间加一个时期:奥陶纪。



24楼2012-08-09 17:11
回复



    而且,这一切,不同的教科书、不同的人都有不同的叫法,因此有的权威提出7个代,而有的权威满足于4个代。在有的书里,你还会发现不用第三纪和第四纪,而是用不同长度的系来取而代之,称做下第三系和上第三系。有的人还把前寒武纪分成两个代,即非常古老的太古代和较近的元古代。有时候,你还可看到"显生宙"这个词,用来涵盖新生代、中生代和古生代。
      而且,这一切都只用做时间的单位。岩石的单位还另有一套,叫做系、段和期。而且,还有早、晚(指时间)之分和上、下(指岩层)之别。对于不是专家的人来说,这简直是一锅粥;但对于地质学家来说,这都可能是会动感情的东西。"我看到大人们为了生命史上一毫秒的问题争得脸红脖子粗。"英国的理查德·福蒂在谈到20世纪为寒武纪和奥陶纪的分界线而展开的旷日持久的辩论时这样写道。
      今天,我们至少可以使用某些先进的技术来确定年代。在19世纪的大部分时间里,地质学家们只能依赖于推测。他们可以按照时代来排列各种岩石和化石,但根本不知道这些年代的长短,这是很令人泄气的。当巴克兰推测一副鱼龙骨骼的古老程度的时候,他只能认为,它生活在大约"10000或10000以上乘以10000"年以前。
      虽然没有可靠的方法来确定年代,却不乏愿意试一试的人。1650年,爱尔兰教会的詹姆斯·厄舍大主教进行了早年最著名的尝试。他对《圣经》和其他历史资料进行了仔细的研究,最后在一部名叫《旧约编年史》的巨著中下结论说,地球创造于公元前4004年10月23日中午.后来,历史学家和教科书作者一直把这个日期当做笑料。
      顺便提一句,有个很久不灭的神话--它在许多严肃的书里都提到过--厄舍的观点主宰了科学界,直到19世纪的很长时间里。是莱尔把这一切纠正了过来。作为一个典型例子,斯蒂芬·杰伊·古尔德在《时代之箭》中引用了20世纪80年代一本很热门的书里的一句话:"在莱尔出版他的书以前,大多数思想家都接受了这种看法,即地球还很年轻。"实际并非如此。正如马丁·J.S.鲁迪克说的,"哪个国家的地质学家也不会主张把时标限死在《创世记》拘泥于字面意义的诠注的范围之内,要是他的作品被别的地质学家认真对待的话"。
      连巴克兰牧师这样一位19世纪很虔诚的人也认为,《圣经》里哪个地方也没有提到上帝是在第一天创造天地的,只是提到"起初"。他认为,那个开始也许持续了"几百几千万年"。
      大家都认为地球已经很古老。问题只在于:古老到什么程度?
      在确定这颗行星的年龄的问题上,早期有个比较合理的看法。它是由始终可靠的埃德蒙·哈雷提出来的。1715年,他提出,要是你把全世界海洋里的盐的总量,除以每年增加的量,你就会得出海洋存在的年数,从而可以大致知道地球的年龄。这个道理很吸引人,但不幸的是,谁也不知道海洋里究竟有多少盐,也不知道每年到底增加多少,这就使得这项实验无法付诸实施。
    


    25楼2012-08-09 17:13
    回复

      第五章 敲石头的人们(5)
        第一次称得上比较符合科学的尝试是由法国的布丰伯爵乔治-路易·勒克莱尔进行的,那是在18世纪70年代。很长时间以来,大家都知道,地球释放出相当可观的热量--下过煤矿的人都清楚--但是,没有办法来估计散逸率。布丰在实验过程中先把球体加热到白炽的程度,然后在其冷却的过程中用触摸的办法(可能开头是轻轻的)来估计热的损耗率。根据这项实验,他推测地球的年龄在75000-168000年之间。这当然是大大地低估了;但是,这是一种很激进的见解。布丰发现,要是把这见解加以发表,他有被开除教籍的危险。他是个讲究实际的人,连忙为自己缺乏考虑的邪说表示歉意,然后轻松愉快地在随后的著作中不断重复他的看法。
        到19世纪中叶,大多数学者认为地球的年龄起码有几百万年,甚至也许几千万年,但也很可能没有那么大。因此,当1859年查尔斯·达尔文在《物种起源》一书中宣称,根据他的计算,创造威尔德地区--英格兰南部的一个地区,包括肯特、萨里和苏塞克斯--的地质进程花了306662400年时间才完成时,人们不由得大吃一惊。这个结论是很了不起的,部分原因是他说得那么确切,但更因为是他公然不顾公认的有关地球年龄的看法。结果,它引起了激烈的争议,达尔文在该书的第三版中收回了他的看法。然而,问题实际上依然存在。
        达尔文和他的地质界朋友希望地球很古老,但谁也想不出办法。
          这个问题引起了开尔文勋爵大人(他肯定是一位了不起的人物,但到1892年才被提升为贵族,当时他已经68岁,接近他生命的尽头,但我在这里还是按照惯例,溯及既往地使用这个名称)的注意,这对达尔文以及对进步来说是很不幸的。开尔文是19世纪的--也是任何世纪的--最杰出的人物之一。德国科学家赫尔曼·冯·亥姆霍茨--他本人也是科学上的高手--写道,开尔文是他遇到过的最"理解力强、洞察事理、思想活跃"的人。"在他的面前,我有时候觉得自己是木头木脑的。"他不无沮丧地说。
        这种心态是可以理解的,因为开尔文确实是维多利亚时代的超人。他1824年生于贝尔法斯特,父亲是皇家学院的数学教授,过不多久就调到格拉斯哥。开尔文证明自己是个神童,小小年纪(10岁)就考上了格拉斯哥大学。20岁出头,他已经在伦敦和巴黎的学府学习过,毕业于剑桥大学(他赢得该大学在赛艇和数学两个方面的最高奖,还抽空创建了一个音乐俱乐部),当选为彼得学院的研究员,(以英文和法文)写了10多篇关于纯粹数学和应用数学的论文。这些作品都很有创见,他不得不匿名发表,免得使他的长辈们感到难堪。他22岁回到格拉斯哥,担任自然哲学教授。在此后的53年里,他一直保有这个职位。
        在漫长的生涯里(他活到1907年,享年83岁),他写了661篇论文,总共获得69项专利(因此变得很富裕),在物理学的差不多每个学科都享有盛誉。其中,他提出一个方法,后来直接导致制冷技术的发明;设计了绝对温标,至今仍冠以他的名字;发明了增压装置,使越洋发送电报成为可能;还对海运和航海作了无数改进,从发明一个深受欢迎的航海罗盘,到创造第一个深度探测器。这些只是他有实用价值的成果。
        他在电磁学、热力学1和光的波动等理论方面的成果同样是**性的。他实际上只有一个瑕疵,那就是没能计算出地球的年龄。这个问题占去了他后半生的许多时间,但他从来没有得出个比较正确的数字。1862年,在为一本名叫《麦克米伦》的通俗杂志写的一篇文章里,他第一次提出地球的年龄是9800万年,但谨慎地认为这个数字最小可为2000万年,最大可达4亿年。他还小心翼翼地承认,他的计算可能是错的,要是"造物主的大仓库里备有我们目前没有掌握的资料"的话--但是,他显然认为那是不可能的。
        随着时间的过去,开尔文的结论变得越来越确切,越来越不正确。他不停地把自己的估计数字往下降,从最大的4亿年降到1亿年,然后又降到5000万年,最后在1897年降到了仅仅2400万年。开尔文并不是在随心所欲,只是因为物理学无法解释为什么像太阳这么个庞然大物可以连续燃烧几千万年以上,而又耗不尽其燃料。因此,他就想当然地认为,太阳及其行星必然相对年轻。
        问题在于,几乎所有的化石都证明和这个结论相矛盾。而突然之间,19世纪发现了大量的化石。
      


      26楼2012-08-09 17:23
      回复

        第六章 势不两立的科学(2)
          大名鼎鼎的贵族居维叶在巴黎提出了绝种论。同年--实际上是同月,在英吉利海峡对岸,一个不大知名的英国人在发表对化石价值的见解。他的见解也具有持久的影响。威廉·史密斯是萨默塞特的科尔运河建筑工地上的年轻监督员。1796年1月5日,他坐在萨默塞特一家马车旅店里,记下了那个最终会使他名扬天下的观点。若要解释岩石,你非得有某种并置对比的东西。在这个基础上,你可以知道德文的那些石炭纪岩石要比威尔士的这些寒武纪岩石年轻。随着岩层的每一变化,有的物种的化石消失了,而有的化石一直延伸到随后的岩层。通过发现哪种物种在哪个岩层出现,你就可以计算出岩石的年龄,无论这些岩石是在哪里。凭着他作为测量员所拥有的知识,史密斯马上动手绘制英国的岩层图。经过多次试用以后,这些图于1815年出版,成为近代地质学的奠基石。(西蒙·温切斯特在他深受欢迎的《改变世界的地图》一书里对这件事作了全面的记述。)
          不幸的是,尽管史密斯具有敏锐的见解,但说来也怪,他没有兴趣搞清为什么岩石偏偏以那种方式埋在地下。"我没有再研究岩层的起源,满足于知道情况就是那样,"他写道,"什么原因,什么缘故,那不属于一名矿藏测量员的研究范围。"
          史密斯对岩层内情的披露,更增加了绝种论引起的在道德上的难堪程度。首先,它证实了上帝消灭生灵不是偶然的,而是经常的。这么看来,上帝与其说是粗心大意,不如说是极不友好。而且,还有必要花点力气来进行解释,为什么有的物种彻底灭绝,而有的物种却顺利地存活到随后的年代。显而易见,绝种不是诺亚时代的一场"大激流"--即大家知道的《圣经》里的那场洪水--能解释清楚的。居维叶作出了自我满意的解释,认为《创世记》只是指最近的那场洪水。上帝似乎不希望用先前不相干的绝种来分散摩西的注意力或引起他的惊慌。
          因此,到19世纪初,化石势必具有了某种重要性。威斯塔就显得更不幸了,竟然没有看到恐龙骨的意义。无论如何,这类骨头在世界各地相继发现。又有了几个机会让美国人来宣布发现了恐龙,但这些机会都没有抓住。1806年,刘易斯和克拉克的考察队穿越蒙大拿的黑尔沟岩组。在这个地方,实际上他们脚底下恐龙骨比比皆是,他们还发现一样东西嵌在岩石里,显然是恐龙骨,但没有把它当一回事。在新英格兰,有个名叫普利纳斯·穆迪的男孩子在马萨诸塞州南哈德利的一处岩架上发现了古老的足迹;之后,又有人在康涅狄格河谷发现了骨头和足迹的化石。至少其中有一些留存至今--令人注目的是一头安琪龙的骨头--现在由耶鲁大学的皮博迪博物馆收藏。这批恐龙骨发现于1818年,是第一批经过检验和保存下来的恐龙骨,不幸的是,1855年之前无人识货。那一年,卡斯珀·威斯塔去世。不过,威斯塔没有想到的是,植物学家托马斯·纳特尔以他的名字命名了一种可爱的攀附灌木,这倒使威斯塔在一定意义上获得了永生。植物界有的纯粹主义者迄今仍然坚持把这类植物的名字写作"威斯塔里亚"。
          然而,到这个时候,古生物研究的热潮已经移到英国。1812年,在多塞特郡的莱姆里吉斯,有个名叫玛丽·安宁的杰出小女孩--当时只有11岁、12岁或13岁,取决于你看的是谁写的故事--发现一块5米长、样子古怪的海生动物化石,嵌在英吉利海峡岸边一处陡峭而又危险的悬崖上。这类动物现在叫做鱼龙。
          安宁就这样开始了她不同凡响的一生。在之后的35年里,安宁采集化石,并把它们卖给游客。(人们普遍认为,她就是那首著名的绕口令《她在海边卖贝壳》的原始素材。)她还发现了第一块蛇颈龙(另一种海生动物)化石以及第一批最好的翼手龙化石中的一块。严格来说,这些都不是恐龙,但也没有多大关系,因为当时谁也不知道什么是恐龙。只要知道世界上生活过跟我们现在所能看到的完全不同的动物,这也就够了。
          安宁不仅善于发现化石--显然她在这方面是无与伦比的--而且能小心翼翼地、完好无损地把化石挖出来。要是你有机会去参观伦敦自然史博物馆的古代海生爬行动物馆,我劝你不要错过这个机会。只有在这里,你才能欣赏到这位年轻女子使用最简单的工具,在极其困难的条件下,实际上是在孤立无援的情况下,所取得的巨大而又出色的成就。光挖那块蛇颈龙化石她就耐心地花了10年时间。安宁没有受过训练,但她也能为学者们提供像模像样的图片和说明。但是,尽管她具有这等技能,重大的发现毕竟是不多的,因此她一生的大部分时间是在极度贫困中度过的。
          在古生物学史上,很难想得出还有谁比玛丽·安宁更不受人重视,但实际上还有一个人的情况跟她差不多。他叫吉迪恩·阿尔杰农·曼特尔,是苏塞克斯的一名乡村医生。
          曼特尔有一大堆不足之处--他虚荣心强,只顾自己,自命不凡,不关心家庭--但再也找不出一名像他这样投入的业余古生物学工作者。他还很有运气,有一位既忠心耿耿又留心观察的太太。1822年,他去苏塞克斯农村出诊的时候,曼特尔太太正顺着附近的一条小路散步,在一堆用来填平路面凹坑的碎石里发现了一样古怪的东西--一块弧形的棕色骨头,大约有小胡桃那么大小。她认为那是一块化石。她知道自己的丈夫对化石很感兴趣,便拿给了他。曼特尔马上看出,那是一颗牙齿的化石。稍加研究以后,他断定,这是一颗动物牙齿,那种动物生活在白垩纪,食草,爬行,体形庞大--有几十米长。他的估测完全正确;但他的胆量也真够大的,因为在此之前,即使在想像中,谁也没有见过这样的东西。
        


        28楼2012-08-09 17:24
        回复

          第六章 势不两立的科学(3)
            曼特尔意识到,自己的发现会彻底推翻人们对过去的认识。威廉·巴克兰--那位身穿长袍、爱好试验的学者--也劝他小心行事。因此,曼特尔花了3年时间,努力寻找支持自己的结论的证据。他把牙齿送交巴黎的居维叶,征求他的看法,但那位伟大的法国人轻描淡写地认为,那只不过是河马的牙齿。(居维叶姿态很高,后来为这个不常犯的错误道了歉。)有一天,曼特尔在伦敦的亨特博物馆作研究,跟一位同事攀谈起来。那位同事对他说,它看上去很像是他一直在研究的那种动物--南美鬣蜥的牙齿。他们马上进行了比较,确认了它们的相似之处。于是,曼特尔手里的动物以热带一种爱晒太阳的蜥蜴命名,被叫做禽龙。
            其实,二者之间没有任何关系。
            曼特尔写了一篇论文,准备递交给英国皇家学会。不幸的是,恰好又有一块恐龙骨头在牛津郡的一处采石场被发现,而且刚刚有人作过正式描述--这个人不是别人,就是敦促曼特尔不要仓促行事的巴克兰牧师。它被取名为斑龙。这个名字其实是他的朋友詹姆斯·帕金森博士--那位未来的激进分子、帕金森综合征的鼻祖--向巴克兰建议的。大家也许记得,帕金森最初是个地质学家,他对斑龙的研究显示了他在这方面的成就。在为《伦敦地质学会学报》写的报告中,他注意到,那种动物的牙齿不像蜥蜴那样直接连着颌骨,而像鳄鱼那样长在牙槽里。不过,巴克兰就注意到这么多,没有认识到它的意义,即斑龙完全是一种新发现的动物。不过,尽管他的报告缺少敏锐的目光和深刻的见解,它仍是发表过的描述斑龙的第一篇文章。因此,人们把发现这种古代动物的功劳归给了巴克兰,而不是更有资格的曼特尔。
            曼特尔不知道失望会伴随自己的一生,继续寻找化石--1833年,他发现了另一个庞然大物雨蛙龙--并从采石场工人和农夫手里买回别的化石,最后很可能成了英国最大的化石收藏家。曼特尔是一位杰出的医生,在搜集骨头方面也同样很有天赋,但他无法同时维持这两方面的才能。随着他越来越热衷于搜集工作,他忽视了医生职业。过不多久,他在布赖顿的家里几乎塞满了化石,花掉了大部分收入。剩下的钱被用来支付书的出版费用,而他的书又极少人愿意购买。1827年出版的《苏塞克斯的地质说明》只卖掉了50本,很不开心地倒贴了300英镑--这在当时是一笔不小的数目。
            曼特尔在绝望之中灵机一动,把自己的房子改成了博物馆,收取门票费。然而,他后来意识到这种商业行为会损害他的绅士地位,且不说科学家的地位--于是就让别人免费参观他的家庭博物馆。成百上千的人前来参观,一个星期又一个星期,既中断了他的行医工作,又扰乱了他的家庭生活。最后,为了偿还债务,他不得不变卖绝大部分收藏品。过不多久,他的妻子带着他的四个孩子离他而去。
            值得注意的是,他的麻烦才刚刚开始。
              在伦敦南部的西德纳姆区,有个地方名叫水晶宫公园。那里耸立着一片被人遗忘的奇观:世界上第一批实物大小的恐龙模型。近来去那里的人不太多,但一度这里是伦敦游客最多的胜地之一--事实上,正如理查德·福蒂说的,它是世界上第一个主题公园。严格来说,那些模型在许多方面是不正确的。禽龙的大拇指顶在鼻子上,变成了一根尖刺;它长着四条粗壮的腿,看上去像一条肥肥胖胖、不成比例的狗。(其实,禽龙不用四条腿蹲着,而是一种两足动物。)现在望着它们,你几乎想不到这些古怪而行动缓慢的动物会引起积怨和仇恨,但事实却是如此。在自然史上,也许从来没有哪种动物像名叫恐龙的古代动物那样成为强烈而又持久的仇恨的中心。
            建造恐龙模型的时候,西德纳姆位于伦敦边缘,宽敞的公园被认为是重建著名的水晶宫的理想之地。玻璃和铸铁结构的水晶宫曾是1851年博览会的中心场所。新建的公园很自然地以此冠名。用混凝土建成的恐龙模型是一种很有经济效益的景观。1853年除夕,在尚未完工的禽龙模型内为21名科学家举行了一次著名的晚宴。那位发现并确认禽龙的人吉迪恩·曼特尔不在其中。坐在餐桌上手的是古生物学这门年轻的科学里最伟大的人物,他的名字叫理查德·欧文。到这个时候,他已经花费几年心血,成果累累,害得吉迪思·曼特尔的日子很不好过。
            欧文在英格兰北部的兰开斯特长大,受过训练准备当医生。他是个天生的解剖学家,对研究工作不遗余力,有时候非法取下尸体上的四肢、器官和别的部位,拿回家里慢慢地解剖。有一回,他用麻袋搬回刚从一具非洲黑人水手的尸体上取下的头,不慎绊着湿漉漉的石头滑了一跤,惊慌地望着那个头从身边一蹦一跳地顺着小巷滚去,钻进一户人家开着的门洞里,在前厅里停了下来。至于那户人家的主人见到一个头滚到自己的脚边会说些什么,我们只能想像了。有人讲,他们还来不及搞清是怎么回事,突然间一个焦急万分的年轻人冲进来拾起那个头,又冲了出去。
            1825年,欧文21岁,他搬到了伦敦,不久就被英国皇家外科学院聘用,帮助清理又多又乱的医学和解剖标本。其中,大部分是杰出的外科医生、医学珍品的孜孜不倦的收藏家约翰·亨特留给这个学院的,但从来没有分过类和清理过,很大程度上因为亨特死后不久,说明每件物品的意义的文字材料丢失了。
          


          29楼2012-08-09 17:24
          回复
             

            


            35楼2012-08-09 17:28
            回复

              第七章 基本物质(3)
                他先逃到英国,然后来到德国,在那里担任巴伐利亚政府的军事顾问。他深深打动了当局,1791年被授予"神圣罗马帝国伦福德伯爵"的称号。在慕尼黑期间,他还设计和筹建了那个名叫英国花园的著名公园。
                在此期间,他挤出时间搞了大量纯科学工作。他成为世界上最著名的热力学权威,成为阐述液体对流和洋流循环原理的第一人。他还发明了几样有用的东西,包括滴滤咖啡壶、保暖内衣和一种现在仍叫做伦福德火炉的炉灶。1805年在法国逗留期间,他向安托万-洛朗·拉瓦锡的遗孀拉瓦锡太太求爱,娶她当了夫人。这桩婚事并不成功,他们很快就分道扬镳。
                伦福德继续留在法国,直到1814年去世。他受到法国人的普遍尊敬,除了他的几位前妻。
                我们之所以在这里提到他,是因为1799年他在伦敦的短暂停留期间创建了皇家科学研究所。18世纪末和19世纪初,英国各地涌现了许多学术团体,它成了其中的又一名成员。在一段时间里,它几乎是惟一的一所旨在积极发展化学这门新兴科学的有名望的机构,而这几乎完全要归功于一位名叫汉弗莱·戴维的杰出的年轻人。这个机构成立之后不久,戴维被任命为该研究所的化学教授,很快就名噪一时,成为一位卓越的授课者和多产的实验师。
                上任不久,戴维开始宣布发现一种又一种新的元素:钾、钠、锰、钙、锶和铝。他发现那么多种元素,与其说是因为他搞清了元素的排列,不如说是因为他发明了一项巧妙的技术:把电流通过一种熔融状态的物质--就是现在所谓的电解。他总共发现了12种元素,占他那个时代已知总数的五分之一。戴维本来会作出更大的成绩,但不幸的是,他是个年轻人,渐渐沉迷于一氧化二氮所带来的那种心旷神怡的乐趣。他简直离不开那种气体,一天要吸入三四次.最后,在1829年,据认为就是这种气体断送了他的性命。
                幸亏别处还有别的严肃的人在从事这项工作。1808年,一位名叫约翰·道尔顿的年轻而顽强的贵格会教徒,成为宣布原子性质的第一人(过一会儿我们将更加充分地讨论这个进展);1811年,一个有着歌剧似的漂亮名字--洛伦佐·罗马诺·阿马德奥·卡洛·阿伏伽德罗--的意大利人取得了一项从长远来看将证明是具有重大意义的发现--即体积相等的任何两种气体,在压力相等和温度相等的情况下,拥有的原子数量相等。
                它后来被称做阿伏伽德罗定律。这个简单而有趣的定律在两个方面值得注意。第一,它为更精确地测定原子的大小和重量奠定了基础。化学家们利用阿伏伽德罗数最终测出,比如,一个典型的原子的直径是0.00000008厘米。这个数字确实很小。第二,差不多有50年时间,几乎谁也不知道这件事。
                一方面,是因为阿伏伽德罗是个离群索居的人--他一个人搞研究,从来不参加会议;另一方面,也是因为没有会议可以参加,很少有几家化学杂志可以发表文章。这是一件很怪的事。工业**的动力在很大程度上来自化学的发展,而在几十年的时间里化学却几乎没有作为一门系统的科学独立存在。
                直到1841年,才成立了伦敦化学学会;直到1848年,那个学会才定期出版一份杂志。而到那个时候,英国的大多数学术团体--地质学会、地理学会、动物学学会、园艺学学会和(由博物学家和植物学家组成的)林奈学会--至少已经存在20年,有的还要长得多。它的竞争对手化学研究所直到1877年才问世,那是在美国化学学会成立一年之后。由于化学界的组织工作如此缓慢,有关阿伏伽德罗1811年的重大发现的消息,直到1860年在卡尔斯鲁厄召开第一次国际化学代表大会才开始传开。
                由于化学家们长期在隔绝的环境里工作,形成统一用语的速度很慢。直到19世纪末叶,H2O对一个化学家来说意为水,对另一个化学家来说意为过氧化氢。C2H2可以指乙烯,也可以指沼气。几乎没有哪种分子符号在各地是统一的。
                化学家们还使用各种令人困惑的符号和缩写,常常是自己发明的。瑞典的J.J.伯采留斯发明了一种非常急需的排列方法,规定元素应当依照其希腊文或拉丁文名字加以缩写。这就是为什么铁的缩写是Fe(源自拉丁文ferrum),银的缩写是Ag(源自拉丁文argentum)。
                许多别的缩写与英文名字一致(氮是N,氧是O,氢是H等等),这反映了英语的拉丁语支性质,并不是因为它的地位高。为了表示分子里的原子数量,伯采留斯使用了一种上标方法,如H2O。后来,也没有特别的理由,大家流行把数字改为下标,如H2O。
                尽管偶尔有人整理一番,直到19世纪末叶,化学在一定程度上仍处于混乱状态。因此,当俄罗斯圣彼得堡大学的一位模样古怪而又不修边幅的教授跻身于显赫地位的时候,人人都感到很高兴。那位教授的名字叫德米特里·伊凡诺维奇·门捷列夫。
                1834年,在遥远的俄罗斯西伯利亚西部的托博尔斯克,门捷列夫生于一个受过良好教育的、比较富裕的大家庭。这个家庭如此之大,史书上已经搞不清究竟有多少个姓门捷列夫的人:有的资料说是有14个孩子,有的说是17个。不过,反正大家都认为德米特里是其中最小的一个。门捷列夫一家并不总是福星高照。德米特里很小的时候,他的父亲--当地一所小学的校长--就双目失明,母亲不得不出门工作。她无疑是一位杰出的女性,最后成为一家很成功的玻璃厂的经理。一切都很顺利,直到1848年一场大火把工厂烧为灰烬,一家人陷于贫困。坚强的门捷列夫太太决心要让自己的小儿子接受教育,带着小德米特里搭便车跋涉6000多公里(相当于伦敦到赤道几内亚的距离)来到圣彼得堡把他送进教育学院。她筋疲力尽,过不多久就死了。
              


              36楼2012-08-09 17:29
              回复

                第七章 基本物质(4)
                  门捷列夫兢兢业业地完成了学业,最后任职于当地的一所大学。他在那里是个称职的而又不很突出的化学家,更以他乱蓬蓬的头发和胡子而不是以他在实验室里的才华知名。他的头发和胡子每年只修剪一次。
                  然而,1869年,在他35岁的那一年,他开始琢磨元素的排列方法。当时,元素通常以两种方法排列--要么按照原子量(使用阿伏伽德罗定律),要么按照普通的性质(比如,是金属还是气体)。门捷列夫的创新在于,他发现二者可以合在一张表上。
                  实际上,门捷列夫的方法,3年以前一位名叫约翰·纽兰兹的英格兰业余化学家已经提出过,这是科学上常有的事。纽兰兹认为,如果元素按照原子量来进行排列,它们似乎依次每隔8个位置重复某些特点--从某种意义上说,和谐一致。有点不大聪明的是--因为这么做时间还不成熟--纽兰兹将其命名为"八度定律",把这种安排比做钢琴键盘上的八度音阶。纽兰兹的说法也许有点道理,但这种做法被认为是完全荒谬的,受到了众人的嘲笑。
                  在集会上,有的爱开玩笑的听众有时候会问他,他能不能用他的元素来弹个小曲子。纽兰兹灰心丧气,没有再研究下去,不久就销声匿迹了。
                  门捷列夫采用了一种稍稍不同的方法,把每七个元素分成一组,但使用了完全相同的前提。突然之间,这方法似乎很出色,视角很清晰。由于那些特点周期性地重复出现,所以这项发明就被叫做"周期表"。
                  据说,门捷列夫是从北美洲的单人牌戏获得了灵感,从别处获得了耐心。在那种牌戏里,纸牌按花色排成横列,按点数排成纵行。他利用一种十分相似的概念,把横列叫做周期,纵行叫做族。上下看,马上可以看出一组关系;左右看,看出另一组关系。具体来说,纵列把性质类似的元素放在一起。因此,铜的位置在银的上面,银的位置在金的上面,因为它们都具有金属的化学亲和性;而氦、氖和氩处于同一纵行,因为它们都是气体。(决定排列顺序的,实际上是它们的电子价。若要搞懂电子价,你非得去报名上夜校。)与此同时,元素按照它们核里的质子数--叫做原子序数--从少到多地排成横列。
                  有关原子的结构和质子的意义,我们将在下一章加以叙述。眼下,我们只来认识一下那个排列原则:氢只有一个质子,因此它的原子序数是1,排在表上第一位;铀有92个质子,因此快要排到末尾,它的原子序数是92。在这个意义上,正如菲利普·鲍尔指出的,化学实际上只是个数数的问题。(顺便说一句,不要把原子序数和原子量混在一起。原子量是某个元素的质子数加中子数之和。)
                  还有大量的东西人们不知道或不懂得。宇宙中最常见的元素是氢;然而,在后来的30年里,对它的认识到此为止。氦是第二多的元素,是在此之前一年才发现的--以前谁也没有想到它的存在--而即使发现,也不是在地球上,而是在太阳里。它是在一次日食时用分光镜发现的,因此以希腊太阳神赫利奥斯命名。直到1895年,氦才被分离出来。即使那样,还是多亏了门捷列夫的发明,化学现在才站稳了脚跟。
                  对我们大多数人来说,周期表是一件美丽而抽象的东西,而对化学家来说,它顿时使化学变得有条有理,明明白白,怎么说也不会过分。"毫无疑问,化学元素周期表是人类发明出来的最优美、最系统的图表。"罗伯特·E.克雷布斯在《我们地球上的化学元素:历史与应用》一书中写道--实际上,你在每一部化学史里都可以看到类似的评价。
                  今天,已知的元素有"120种左右"--92种是天然存在的,还有20多种是实验室里制造出来的。实际的数目稍有争议,那些合成的重元素只能存在百万分之几秒,是不是真的测到了,化学家们有时候意见不一。在门捷列夫时代,已知的元素只有63种。之所以说他聪明,在一定程度上是因为他意识到当时已知的还不是全部元素,许多元素还没有发现。他的周期表准确地预言,新的元素一旦发现就可以各就各位。
                  顺便说一句,没有人知道元素的数目最多会达到多少,虽然原子量超过168的任何东西都被认为是"纯粹的推测";但是,可以肯定,凡是找到的元素都可以利索地纳入门捷列夫那张伟大的图表。
                    19世纪给了化学家们最后一个重要的惊喜。这件事始于1896年。亨利·贝克勒尔在巴黎不慎把一包铀盐忘在抽屉里包着的感光板上。过一些时候以后,当他取出感光板的时候,他吃惊地发现铀盐在上面烧了个印子,犹如感光板曝过了光。铀盐在释放某种射线。
                  考虑到这项发现的重要性,贝克勒尔干了一件很古怪的事:他把这事儿交给一名研究生来调查。说来运气,这位学生恰好是一位新来的波兰移民,名叫玛丽·居里。居里和她的新丈夫皮埃尔合作,发现有的岩石源源不断地释放出大量能量,而体积又没有变小,也没有发生可以测到的变化。她和她的丈夫不可能知道的是--下个世纪爱因斯坦作出解释之前谁也不可能知道的是--岩石在极其有效地把质量转变成能量。玛丽·居里把它称之为"放射作用"。在合作过程中,居里夫妇还发现两种新的元素--钋和铀。钋以她的祖国波兰命名。
                  1903年,居里夫妇和贝克勒尔一起获得了诺贝尔物理学奖。(1911年,玛丽·居里又获得了诺贝尔化学奖;她是既获化学奖又获物理学奖的惟一一人。)
                


                37楼2012-08-09 17:29
                回复

                  第七章 基本物质(5)
                    在蒙特利尔的麦克吉尔大学,新西兰出生的年轻人欧内斯特·卢瑟福对新的放射性材料产生了兴趣。他与一位名叫弗雷德里克·索迪的同事一起,发现很少量的物质里就储备着巨大的能量,地球的大部分热量都来自这种储备的放射衰变。他们还发现放射性元素衰变成别的元素--比如,今天你手里有一个铀原子,明天它就成了一个铅原子。这的确是非同寻常的。这是地地道道的炼金术;过去谁也没有想到这样的事儿会自然而自发地发生。
                    卢瑟福向来是个实用主义者,第一个从中看到了宝贵的实用价值。他注意到,无论哪种放射物质,其一半衰变成其他元素的时间总是一样的--著名的半衰期--这种稳定而可靠的衰变速度可以用做一种时钟。只要计算出一种物质现在有多少放射量,在以多快的速度衰变,你就可以推算出它的年龄。他测试了一块沥青铀矿石--铀的主要矿石--发现它已经有7亿年--比大多数人认为的地球的年龄还要古老。
                    1904年春,卢瑟福来到伦敦给英国皇家科学研究所开了一个讲座--该研究所是伦福德伯爵创建的,只有150年历史,虽然在那些卷起袖子准备大干一场的维多利亚时代末期的人看来,那个搽白粉、戴假发的时代已经显得那么遥远。卢瑟福准备讲的是关于他新发现的放射现象的蜕变理论;作为讲课内容的一部分,他拿出了那块沥青铀矿石。卢瑟福很机灵地指出--因为年迈的开尔文在场,虽然不总是全醒着--开尔文本人曾经说过,要是发现某种别的热源,他的计算结果会被推翻。卢瑟福已经发现那种别的热源。多亏了放射现象,可以算出地球很可能--不言而喻就是--要比开尔文最终计算出的结果2
                  400万年古老得多。
                    听到卢瑟福怀着敬意的陈述,开尔文面露喜色,但实际上无动于衷。他拒不接受那个修改的数字,直到临终那天还认为自己算出的地球年龄是对科学最有眼光、最重要的贡献--要比他在热力学方面的成果重要得多。
                    与大多数科学**一样,卢瑟福的新发现没有受到普遍欢迎。都柏林的约翰·乔利到20世纪30年代还竭力认为地球的年龄不超过8900万年,坚持到死也没有改变。别的人开始担心,卢瑟福现在说的时间是不是太长了点。但是,即使利用放射性测定年代法,即后来所谓的衰变计算法,也要等几十年以后我们才得出地球的真正年龄大约是在10亿年以内。科学已经走上正轨,但仍然任重而道远。
                    开尔文死于1907年。德米特里·门捷列夫也在那年去世。和开尔文一样,他的累累成果将流芳百世,但他的晚年生活显然不大平静。随着人越来越老,门捷列夫变得越来越古怪--他拒不承认放射现象、电子以及许多别的新鲜东西的存在--也越来越难以相处。在最后的几十年里,无论在欧洲什么地方,他大多怒气冲冲地退出实验室和课堂。1955年,第101号元素被命名为钔,作为对他的纪念。"非常恰当,"保罗·斯特拉森认为,"它是一种不稳定的元素。"
                    当然,放射现象实际上在不停地发生,以谁也估计不到的方式发生。20世纪初,皮埃尔·居里开始出现放射病的明显症状--骨头里隐隐作痛,经常有不舒服的感觉--那些症状本来肯定会不断加剧。但是,我们永远也无法确切知道,因为他1906年在巴黎过马路时被马车撞死了。
                    玛丽·居里在余生干得很出色,1914年帮助建立了著名的巴黎大学铀研究所。尽管她两次获得诺贝尔奖,但她从来没有当选过科学院院士。在很大程度上,这是因为皮埃尔死了以后,她跟一位有妻室的物理学家发生了暧昧关系。她的行为如此不检点,连法国人都觉得很丢脸--至少掌管科学院的老头儿们觉得很丢脸。当然,这件事也许跟本书不相干了。
                    在很长时间里,人们认为,任何像放射性这样拥有很大能量的现象肯定是可以派上用场的。有好几年时间,牙膏和通便剂的制造商在自己的产品里放入了有放射作用的钍;至少到20世纪20年代,纽约州芬格湖地区的格伦泉宾馆(肯定还有别的宾馆)还骄傲地以其"放射性矿泉"的疗效作为自己的特色。直到1938年,才禁止在消费品里放入放射性物质。到这个时候,对居里夫人来说已经为时太晚。她1934年死于白血病。事实上,放射性危害性极大,持续的时间极长,即使到了现在,动她的文献--甚至她的烹饪书--还是很危险的。她实验室的图书保存在铅皮衬里的箱子里,谁想看这些书都得穿上保护服。
                    多亏第一代原子科学家的献身精神和不惧高度危险的工作,20世纪初的人们越来越清楚,地球毫无疑问是很古老的,虽然科学界还要付出半个世纪的努力才能很有把握地说它有多么古老。与此同时,科学很快要进入一个新时代--原子时代。
                  


                  38楼2012-08-09 17:29
                  回复

                    第八章 爱因斯坦的宇宙(6)
                      (为了合理评价这些深邃的见解,也许值得注意的是,当莱维特和坎农在根据照片上远方星星的模糊影子推定宇宙的基本特性的时候,哈佛大学的天文学家威廉·H.皮克林--他当然能从一流的天文望远镜里想观察多少次就观察多少次--却在建立自己的理论,认为月球上的黑影是由大群大群的、随着季节迁徙的昆虫形成的。)
                      哈勃把莱维特测量宇宙的标准和维斯托·斯莱弗的红移结合起来,开始以焕然一新的目光有选择地测量空间的点。1923年,他证明,仙女座里一团代号为M31的薄雾状的东西根本不是气云,而是一大堆光华夺目的恒星,其本身就是一个星系,直径有1万光年,离我们至少有90万光年之远。宇宙比任何人想像的还要大--大得多。1924年,哈勃写出了一篇具有划时代意义的论文,题目为《旋涡星云里的造父变星》("星云"源自拉丁语,意为"云",哈勃喜欢用这个词来指星系),证明宇宙不仅仅有银河系,还有大量独立的星系--"孤岛宇宙"--其中许多比银河系要大,要远得多。
                      仅仅这一项发现就足以使哈勃名扬天下,但是,他接着把注意力转向另一个问题,想要计算宇宙到底大了多少,于是有了一个更加令人瞩目的发现。哈勃开始测量远方星系的光谱--斯莱弗已经在亚利桑那州开始做的那项工作。他利用威尔逊山天文台那台新的254厘米天文望远镜,加上一些聪明的推断,到20世纪30年代初已经得出结论:天空中的所有星系(除我们自己的星系以外)都在离我们远去。而且,它们的速率和距离完全成正比:星系距离我们越远,退行速率越快。
                      这的确是令人吃惊的。宇宙在扩大,速度很快,而且朝着各个方向。你无须有多么丰富的想像力就能从这点往后推测,发现它必定是从哪个中心点出发的。宇宙远不是稳定的,固定的,永恒的,就像大家总是以为的那样,而是有个起点。因此,它或许也有个终点。
                      正如斯蒂芬·霍金指出的,奇怪的是以前谁也没有想到要解释宇宙。一个静止的宇宙会自行坍缩,这一点牛顿以及之后的每个有头脑的天文学家都应当明白。还有一个问题:要是恒星在一个静止的宇宙里不停燃烧,就会使整个宇宙酷热难当--对于我们这样的生物来说当然是太热了。一个不断膨胀的宇宙一下子把这个问题基本解决了。
                      哈勃擅长观察,不大擅长动脑子,因此没有充分认识到自己的发现的重大意义。在一定程度上,那是因为他可悲地不知道爱因斯坦的广义相对论。这是很有意思的,因为一方面爱因斯坦和他的理论在这时候已经世界闻名,另一方面,1929年,阿尔伯特·迈克尔逊--这时候已经进入暮年,但仍是世界上最敏锐、最受人尊敬的科学家之一--接受了威尔逊山天文台的一个职位,用他可靠的干涉仪来测量光的速度,至少可以肯定已经向哈勃提到过,爱因斯坦的理论适用于他的发现。
                      无论如何,哈勃没有抓住机会在理论上有所收获,而是把机会留给了一位名叫乔治·勒梅特的比利时教士学者(他获得过麻省理工学院的博士学位)。勒梅特把实践和理论结合起来,创造了自己的"烟火理论"。该理论认为,宇宙一开始是个几何点,一个"原始的原子";它突然五彩缤纷地爆发,此后一直向四面八方散开。这种看法极好地预示了现代的大爆炸理论,但要比那种理论早得多。因此,除了在这里三言两语提他一下以外,勒梅特几乎没有取得别的进展。世界还需要几十年时间,还要等彭齐亚斯和威尔逊在新泽西州咝咝作响的天线上无意中发现宇宙背景辐射,大爆炸才会从一种有趣的想法变成一种固定的理论。
                      无论是哈勃还是爱因斯坦,哪条大新闻里都不会提及多少。然而,尽管当时他们谁也想不到,他们已经作出自己所能作出的贡献。
                      1936年,哈勃写出了一本广受欢迎的书,名叫《星云王国》。他在这本书里以得意的笔调阐述了自己的重要成就,并终于表明他知道爱因斯坦的理论--反正在某种程度上:在大约200页的篇幅中,他用了4页来谈论这种理论。
                      1953年,哈勃心脏病发作去世。然而,还有最后一件小小的怪事在等待着他。出于秘而不宣的原因,他的妻子拒绝举行葬礼,而且再也没有说明她怎么处理了他的遗体。半个世纪以后,该世纪最伟大的天文学家的去向仍然无人知道。若要表示纪念,你非得遥望天空,遥望1990年美国发射的、以他的名字命名的哈勃天文望远镜。
                    


                    44楼2012-08-09 19:49
                    回复

                      第九章 威力巨大的原子(1)
                        当爱因斯坦和哈勃在弄清宇宙的大尺度结构方面成果累累的时候,另一些人在努力搞懂近在手边的而从他们的角度来看又是非常遥远的东西:微小而又永远神秘的原子。
                        加州理工学院伟大的物理学家理查德·费曼有一次发现,要是你不得不把科学史压缩成一句重要的话,它就会是:"一切东西都是由原子构成的。"哪里都有原子,原子构成一切。你四下里望一眼,全是原子。不但墙壁、桌子和沙发这样的固体是原子,中间的空气也是原子。原子大量存在,多得简直无法想像。
                        原子的基本工作形式是分子(源自拉丁文,意思是"小团物质")。一个分子就是两个或两个以上以相对稳定的形式一起工作的原子:一个氧原子加上两个氢原子,你就得到一个水分子。化学家往往以分子而不是以元素来考虑问题,就像作家往往以单词而不是以字母来考虑问题一样,因此他们计算的是分子。分子的数量起码可以说是很多的。在海平面的高度、零摄氏度温度的情况下,一立方厘米空气(大约相当于一块方糖所占的空间)所含的分子多达4
                      500亿亿个。而你周围的每一立方厘米空间都有这么多分子。想一想,你窗外的世界有多少个立方厘米--要用多少块方糖才能填满你的视野。然后再想一想,要多少个这样的空间才能构成宇宙。总而言之,原子是很多的。
                        原子还不可思议地长寿。由于原子那么长寿,它们真的可以到处漫游。你身上的每个原子肯定已经穿越几个恒星,曾是上百万种生物的组成部分,然后才成为了你。我们每个人身上都有大量原子;这些原子的生命力很强,在我们死后可以重新利用;在我们身上的原子当中,有相当一部分--有人测算,我们每个人身上多达10亿个原子--原先很可能是莎士比亚身上的原子,释迦牟尼、成吉思汗、贝多芬以及其他你点得出的历史人物又每人贡献10亿个原子。(显然非得是历史人物,因为原子要花大约几十年的时间才能彻底地重新分配;无论你的愿望多么强烈,你身上还不可能有一个埃尔维斯·普雷斯利的原子。)  因此,我们都是别人转世化身来的--虽然是短命的。我们死了以后,我们的原子就会天各一方,去别处寻找新的用武之地--成为一片叶子或别的人体或一滴露水的组成部分。
                        而原子本身实际上将永远活下去。其实,谁也不知道一个原子的寿命,但据马丁·里斯说,它的寿命大约为1035年--这个数字太大,连我也乐意用数学符号来表示。
                        而且,原子很小--确实很小。50万个原子排成一行还遮不住一根人的头发。以这样的比例,一个原子小得简直无法想像。不过,我们当然可以试一试。
                        先从1毫米着手,就是这么长的一根线:-。现在,我们来想像一下,这根线被分成了宽度相等的1000段。每一段的宽度是1微米。这就是微生物的大小。比如,一个标准的草履虫--一种单细胞的淡水小生物--大约为2微米宽,也就是0.002毫米,它确实小得不得了。要是你想用肉眼看到草履虫在一滴水里游,你非得把这滴水放大到12米宽。然而,要是你想看到同一滴水里的原子,你非得把这滴水放大到24公里宽。
                        换句话说,原子完全存在于另一种微小的尺度上。若要知道原子的大小,你就得拿起这类微米大小的东西,把它切成10000个更小的东西。那才是原子的大小:1毫米的千万分之一.这么小的东西远远超出了我们的想像范围。但是,只要记住,一个原子对于上述那条1毫米的线,相当于一张纸的厚度对于纽约帝国大厦的高度,它的大小你就有了个大致的概念。
                        当然,原子之所以如此有用,是因为它们数量众多,寿命极长,而之所以难以被察觉和认识,是因为它们太小。首先发现原子有三个特点--即小、多、实际上不可毁灭--以及一切事物都是由原子组成的,不是你也许会以为的安托万-洛朗·拉瓦锡,甚至不是亨利·卡文迪许或汉弗莱·戴维,而是一名业余的、没有受过多少教育的英国贵格会教徒,名叫约翰·道尔顿发现的,我们在第七章里第一次提到过他的名字。
                        道尔顿的故乡位于英国湖泊地区边缘,离科克默思不远。他1766年生于一个贫苦而虔诚的贵格会织布工家庭。(4年以后,诗人威廉·华兹华斯也来到科克默思。)他是个聪明过人的学生--他确实聪明,12岁的小小年纪就当上了当地贵格会学校的校长。这也许说明了道尔顿的早熟,也说明了那所学校的状况,也许什么也说明不了。我们从他的日记里知道,大约这时候他正在阅读牛顿的《原理》--还是拉丁文原文的--和别的具有类似挑战性的著作。到了15岁,他一方面继续当校长,一方面在附近的肯达尔镇找了个工作;10年以后,他迁往曼彻斯特,在他生命的最后50年里几乎没有挪动过。在曼彻斯特,他成了一股智力旋风,出书呀,写论文呀,内容涉及从气象学到语法。他患有色盲,在很长时间里色盲被称做道尔顿症,因为他从事这方面的研究。但是,是1808年出版的一本名叫《化学哲学的新体系》的厚书,终于使他出了名。
                        在该书只有4页的短短的一章里(该书共有900多页),学术界人士第一次接触到了近乎现代概念的原子。道尔顿的见解很简单:在一切物质的基部,都是极其微小而又不可还原的粒子。"创造或毁灭一个氢粒子,也许就像向太阳系引进一颗新的行星或毁灭一颗业已存在的行星那样不可能。"他写道。
                      


                      45楼2012-08-09 19:50
                      回复




                        


                        47楼2012-08-10 17:04
                        回复

                          第九章 威力巨大的原子(3)
                            开头,卢瑟福研究无线电波,取得了一点成绩--他成功地把一个清脆的信号发送到了1公里之外,这在当时是一个相当可以的成就--但是,他放弃了,因为有一位资深同事劝他,无线电没有多大前途。总的来说,卢瑟福在卡文迪许实验室的事业不算兴旺。他在那里待了3年,觉得自己没有多大作为,便接受了蒙特利尔麦克·吉尔大学的一个职位,从此稳步走上了通向辉煌的漫长之路。到他获得诺贝尔奖的时候,他已经转到曼彻斯特大学。其实是在那里,他将取得最重要的成果,确定原子的结构和性质。
                            到20世纪初,大家已经知道,原子是由几个部分构成的--汤姆逊发现电子,就确立了这种见解--但是,大家还不知道的是:到底有多少个部分;它们是怎样合在一起的;它们呈什么形状。有的物理学家认为,原子可能是立方体的,因为立方体可以整齐地叠在一起,不会浪费任何空间。然而,更普遍的看法是,原子更像一块葡萄干面包,或者像一份葡萄干布丁:一个密度很大的固体,带有正电荷,上面布满了带负电荷的电子,就像葡萄干面包上的葡萄干。
                            1910年,卢瑟福(在他的学生汉斯·盖格的协助之下。盖格后来将发明冠有他名字的辐射探测仪)朝一块金箔发射电离的氦原子,或称α粒子。令卢瑟福吃惊的是,有的粒子竟会反弹回来。他说,他就像朝一张纸发射了一发38厘米的炮弹,结果炮弹反弹到了他的膝部。这是不该发生的事。经过冥思苦想以后,他觉得只有一种解释:那些反弹回来的粒子击中了原子当中又小又密的东西,而别的粒子则畅通无阻地穿了过去。卢瑟福意识到,原子内部主要是空无一物的空间,只有当中是密度很大的核。这是个很令人满意的发现。但马上产生了一个问题,根据传统物理学的全部定律,原子因此就不应该存在。
                              让我们稍停片刻,先来考虑一下现在我们所知道的原子结构。每个原子都由三种基本粒子组成:带正电荷的质子,带负电荷的电子,以及不带电荷的中子。质子和中子装在原子核里,而电子在外面绕着旋转。质子的数量决定一个原子的化学特性。有一个质子的原子是氢原子;有两个质子的原子是氦原子;有三个质子的原子是锂原子;如此往上增加。你每增加一个质子就得到一种新元素。(由于原子里的质子数量总是与同样数量的电子保持平衡,因此你有时候会发现有的书里以电子的数量来界定一种元素,结果完全一样。有人是这样向我解释的:质子决定一个原子的身份,电子决定一个原子的性情。)  中子不影响原子的身份,但却增加了它的质量。一般来说,中子数量与质子数量大致相等,但也可以稍稍多一点或少一点。增加或减少一两个中子,你就得到了同位素。考古学里就是用同位素来确定年代的--比如,碳-14是由6个质子和8个中子组成的碳原子(因为二者之和是14)。
                            中子和质子占据了原子核。原子核很小--只有原子全部容量的千万亿分之一,但密度极大,它实际上构成了原子的全部物质。克罗珀说,要是把原子扩大到一座教堂那么大,原子核只有大约一只苍蝇那么大--但苍蝇要比教堂重几千倍。1910年卢瑟福在苦苦思索的,就是这种宽敞的空间--这种令人吃惊、料想不到的宽敞空间。
                            认为原子主要是空荡荡的空间,我们身边的实体只是一种幻觉,这个见解现在依然令人吃惊。要是两个物体在现实世界里碰在一起--我们常用台球来作为例子--它们其实并不互相撞击。"而是,"蒂姆西·费里斯解释说,"两个球的负电荷场互相排斥......要是不带电荷,它们很可能会像星系那样安然无事地互相穿堂而过。"你坐在椅子上,其实没有坐在上面,而是以1埃(一亿分之一厘米)的高度浮在上面,你的电子和它的电子不可调和地互相排斥,不可能达到更密切的程度。
                            差不多人人的脑海里都有一幅原子图,即一两个电子绕着原子核飞速转动,就像行星绕着太阳转动一样。这个形象是1904年由一位名叫长冈半太郎的日本物理学家创建的,完全是一种聪明的凭空想像。它是完全错的,但照样很有生命力。正如艾萨克·阿西莫夫喜欢指出的,它给了一代又一代的科幻作家灵感,创作了世界中的世界的故事,原子成了有人居住的太阳系,我们的太阳系成了一个大得多的体系里的一颗微粒。连欧洲核子研究中心也把长冈所提出的图像作为它网站的标记。物理学家很快就意识到,实际上,电子根本不像在轨道上运行的行星,更像是电扇旋转着的叶片,想要同时填满轨道上的每一空间。(但有个重要的不同之处,那就是,电扇叶片只是好像同时在每个地方,电子真的就同时在每个地方。)
                            不用说,在1910年,或在此后的许多年里,知道这类知识的人为数甚少。卢瑟福的发现马上产生了几个大问题。尤其是,围绕原子核转动的电子可能会坠毁。传统的电动力学理论认为,飞速转动的电子很快会把能量消耗殆尽--只是一刹那间--然后盘旋着飞进原子核,给二者都带来灾难性的后果。还有一个问题,带正电荷的质子怎么能一起待在原子核里面,而又不把自己及原子的其他部分炸得粉碎。显而易见,那个小天地里在发生的事,是不受适用于我们宏观世界的规律支配的。
                          


                          48楼2012-08-10 17:04
                          回复

                            第九章 威力巨大的原子(5)
                              因此,结果证明,原子不完全是大多数人创造的那个模样。电子并不像行星绕着太阳转动那样在绕着原子核飞速转动,而更像是一朵没有固定形状的云。原子的"壳"并不是某种坚硬而光滑的外皮,就像许多插图有时候怂恿我们去想像的那样,而只是这种绒毛状的电子云的最外层。实质上,云团本身只是个统计概率的地带,表示电子只是在极少的情况下才越过这个范围。因此,要是你弄得明白的话,原子更像是个毛茸茸的网球,而不大像个外缘坚硬的金属球。(其实,二者都不大像,换句话说,不大像你见过的任何东西。毕竟,我们在这里讨论的世界,跟我们身边的世界是非常不同的。)
                              古怪的事情似乎层出不穷。正如詹姆斯·特雷菲尔所说,科学家们首次碰到了"宇宙里我们的大脑无法理解的一个区域"。或者像费曼说的:"小东西的表现,根本不像大东西的表现。"随着深入钻研,物理学家们意识到,他们已经发现了一个世界:在那个世界里,电子可以从一个轨道跳到另一个轨道,而又不经过中间的任何空间;物质突然从无到有--"不过,"用麻省理工学院艾伦·莱特曼的话来说,"又倏忽从有到无。"
                              量子理论有许多令人难以置信的地方,其中最引人注目的是沃尔夫冈·泡利在1925年的"不相容原理"中提出的看法:某些成双结对的亚原子粒子,即使被分开很远的距离,一方马上会"知道"另一方的情况。粒子有个特性,叫做自旋,根据量子理论,你一确定一个粒子的自旋,那个姐妹粒子马上以相反的方向、相等的速率开始自旋,无论它在多远的地方。
                              用科学作家劳伦斯·约瑟夫的话来说,这就好比你有两个相同的台球,一个在美国俄亥俄州,一个在斐济,当你旋转其中一个的时候,另一个马上以相反的方向旋转,而且速度完全一样。令人惊叹的是,这个现象在1997年得到了证实,瑞士日内瓦大学的物理学家把两个光子朝相反方向发送到相隔11公里的位置,结果表明,只要干扰其中一个,另一个马上作出反应。
                              事情达到了这样的一种程度:有一次会议上,玻尔在谈到一种新的理论时说,问题不是它是否荒唐,而是它是否足够荒唐。为了说明量子世界那无法直觉的性质,薛定谔提出了一个著名的思想实验:假设把猫儿放进一只箱子,同时放进一个放射性物质的原子,连着一小瓶氢氰酸。要是粒子在一个小时内发生衰变,它就会启动一种机制,把瓶子击破,使猫儿中毒。要不然,猫儿便会活着。但是,我们无法知道会是哪种情况,因此从科学的角度来看无法作出抉择,只能同时认为猫儿百分之百地活着、百分之百地死了。正如斯蒂芬·霍金有点儿激动地(这可以理解)说,这意味着,你无法"确切预知未来的事情,要是你连宇宙的现状都无法确切测定的话"。
                              由于存在这么多古怪的特点,许多物理学家不喜欢量子理论,至少不喜欢这个理论的某些方面,尤其是爱因斯坦。这是很有讽刺意味的,因为正是他在1905年这个奇迹年中很有说服力地解释说,光子有时候可以表现得像粒子,有时候表现得像波--这是新物理学的核心见解。"量子理论很值得重视。"他彬彬有礼地认为,但心里并不喜欢,"上帝不玩骰子。
                              "他说。
                              爱因斯坦无法忍受这样的看法:上帝创造了一个宇宙,而里面的有些事情却永远无法知道。而且,关于超距作用的见解--即一个粒子可以在几万亿公里以外立即影响另一个粒子--完全违反了狭义相对论。什么也超不过光速,而物理学家们却在这里坚持认为,在亚原子的层面上,信息是可以以某种方法办到的。(顺便说一句,迄今谁也解释不清楚粒子是如何办到这件事的。据物理学家雅基尔·阿哈拉诺夫说,科学家们对待这个问题的办法是"不予考虑"。)  最大的问题是,量子物理学在一定程度上打乱了物理学,这种情况以前是不存在的。突然之间,你需要有两套规律来解释宇宙的表现--用来解释小世界的量子理论和用来解释外面大宇宙的相对论。相对论的引力出色地解释了行星为什么绕太阳转动,星系为什么容易聚集在一起,而在粒子的层面上又证明不起作用。为了解释是什么把原子拢在一起,你就需要有别的力。20世纪30年代发现了两种:强核力和弱核力。强核力把原子捆在一起,是它将质子拢在原子核里;弱核力从事各种工作,主要与控制某种放射衰变的速率有关。
                              弱核力尽管叫做弱核力,它比万有引力要强1亿亿倍;强核力比这还要强--实际上要强得多--但它的影响只传到极小的距离。强核力的影响只能传到原子直径的大约十万分之一的地方。这就是原子核的体积如此之小、密度如此之大的原因,也是原子核又大又多的元素往往很不稳定的原因:强核力无法抓住所有的质子。
                              结果,物理学最后有了两套规律--一套用来解释小世界,一套用来解释大宇宙--各过各的日子。爱因斯坦也不喜欢这种状况。在他的余生里,他潜心寻找一种"大统一理论"
                              来扎紧这些松开的绳头,但总是以失败告终。他有时候认为自己已经找到,但最后总是觉得白费工夫。随着时间的过去,他越来越不受人重视,甚至有点儿被人可怜。又是斯诺写道:"他的同事们过去认为,现在依然认为,他浪费了他的后半生。"
                            


                            50楼2012-08-10 17:05
                            回复

                              第十章 把铅撵出去(2)
                                他的死亡本身也是极不寻常的。米奇利患脊髓灰质炎变成跛子以后,发明了一个机械装置,利用一系列机动滑轮自动帮他在床上抬身或翻身。1944年,当这台机器启动的时候,他被缠在绳索里窒息而死。
                                  要是你对确定事物的年龄感兴趣,20世纪40年代的芝加哥大学是个该去的地方。威拉德·利比快要发明放射性碳年代测定法,使科学家们能测出骨头和别的有机残骸的精确年代,这在过去是办不到的。到这个时候,可靠的年代最远只达埃及的第一王朝--公元前3000年左右。例如,谁也没有把握说出,最后一批冰盖是在什么时候退缩的,法国的克罗马农人是在过去什么时候装饰拉斯科山洞的。
                                利比的方法用途很广,他因此获得了1960年的诺贝尔奖。这种方法基于一种认识:生物内部都有一种碳的同位素--名叫碳-14,生物一死,该同位素马上以可以测定的速度开始衰变。碳-14大约有5600年的半衰期--即任何样品消失一半所需的时间--因此,通过确定某种特定的碳样的衰变程度,利比就可以有效地锁定一个物体的年代--虽然是在一定限度以内。经过八个半衰期以后,原先的放射性碳只剩下0.39%。这个量太小,无法进行可靠的测算,因此碳-14年代测定法只适用于年代不超过4万年左右的物体。
                                有意思的是,随着这项技术的广泛使用,有些疵点也日渐显露出来。首先,人们发现,利比公式里有个名叫衰变常数的基本成分存在3%的误差。而到了这个时候,全世界已经进行了数千次计算。科学家们没有修正每个计算结果,而是决定保留这个不准确的常数。"这样,"提姆·弗兰纳里说,"你只要把今天见到的每一个以放射性碳年代测定法测定的年代减去大约3%。"问题没有完全解决。人们又很快发现,碳-14的样品很容易被别处的碳污染--比如,一小点儿连同样品一起被采集来的而又没有被注意到的植物。对于年代不大久远的样品来说--年代小于大约2万年的样品--稍有污染并不总是关系很大,而对于年代比较久远的样品来说,这有可能是个严重的问题,因为统计中的剩余原子数实在太少了。借用弗兰纲纳里的话来说,在第一种情况下,就像是1000美元里少数1美元;而在第二种情况下,就像是仅有的2美元里少数了1美元。
                                而且,利比的方法是以如下假设为基础的,即大气里碳-14的含量以及生物吸收这种物质的速度,在整个历史进程中是始终不变的。事实并非如此。我们现在知道,大气里碳-14的数量变化不定,取决于地球的磁场能否有效地改变宇宙射线的方向;在漫长的时间里,变化的幅度可能很大。这意味着,有些以碳-14年代测定法测定的年代要比别的这类年代更无把握。在比较缺少把握的年代当中,有人类首次抵达美洲前后这一段时期的年代。这就是为什么那个问题老是争论不休的原因之一。
                                最后,也许有点儿出人意料的是,计算结果可能由于表面看来毫不相干的外因--比如动物的饮食结构--而完全失去意义。最近有个案例引起了广泛激烈的争论,即梅毒究竟起源于新大陆还是旧大陆。赫尔的考古学家们发现,修道院坟地里的修道士患有梅毒。最初的结论是,修道士在哥伦布航行之前就已经患上了梅毒。但是,该结论受到了质疑,因为科学家们发现,他们吃了大量的鱼,这会使他们骨头的年代看上去比实际的要古老。修道士可能患有梅毒,但究竟是怎么患上的,什么时候患上的,问题似乎容易解决,却依然没有解决。
                                由于碳-14年代测定法的缺点加起来还真不少,科学家们发明了别的办法来测定古代物质的年代,其中有发热光测定法和电子自旋共振测定法。前者用来测定存留在泥土里的电子数;后者以电磁波轰击一件样品来测定电子的振动。但是,即使用最好的方法,你也无法测定20万年以上的东西的年代,也根本无法测定岩石那样的无机物质的年代。然而,若要确定我们这颗行星的年龄,这当然是必不可少的。
                                测定岩石年代的问题在于,世界上几乎人人都一度不抱希望。要不是出了一位决心很大的、名叫阿瑟·霍姆斯的英国教授,这项探索很可能会完全停顿下来。
                                无论在克服困难方面,还是在取得的成就方面,霍姆斯都很有英雄气概。20世纪20年代,正当他的事业进入全盛期的时候,地质学已经不再吃香--物理学是那个时代的热门科学,资金严重缺乏,尤其在它的精神诞生地英国。多少年来,他是达勒姆大学地质系的惟一人员。为了进行测定岩石年代的工作,他常常不得不借用或拼凑设备。有一次,为了等校方为他提供一台简单的加法机,他的计算工作竟然耽搁了1年时间。有时候,他不得不完全停止学术工作,以便挣钱来养家糊口--一度在纽卡斯尔开了个古董店,有时候他连地质学会每年5英镑的会费也缴不起。
                                霍姆斯在研究工作中使用的方法,在理论上其实并不复杂,直接产生于欧内斯特·卢瑟福于1904年最初发现的那个过程,即,有的原子以一种可以预测的比率从一种元素衰变成另一种元素,因此这个过程可以用来当时钟。要是你知道钾-40要经过多长时间才变成氩-40,并且测定样品里这两种元素的量,你就可以得出那种物质的年代。霍姆斯的贡献在于,以测定铀衰变成铅的比率来测定岩石的年代,从而--他希望--能测定地球的年龄。
                              


                              53楼2012-08-10 17:07
                              回复