岐黄道术吧 关注:16贴子:249
  • 4回复贴,共1

“公理化”

只看楼主收藏回复

http://tieba.baidu.com/p/807071987


1楼2012-10-19 09:14回复
    1.【定义】
    所谓公理化方法,就是指从尽可能少的原始概念和不加证明的原始命题(即公理或公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法。
    2.【公理化的准则及目的】
    数学公理化的目的是要把一门数学整理成为一个演绎系统,而这一系统的出发点就是一组基本概念和公理.因此,要建立一门数学的演绎系统,就要在第一步的基础上,从原有的资料、数据和经验中选择一些基本概念和确定一组公理,然后由此来定义其它有关概念并证明有关命题.选取的基本概念是不定义概念,必须是无法用更原始、更简单的概念去确定其涵义的,也就是说,它是高度纯化的抽象,是最原始最简单的思想规定. 在确定了基本概念和公理之后,就要由此出发,经过演绎推理,将一门数学展开成一个严格的理论系统.也就是说,对系统中的每一概念予以定义,而每一个定义中引用的概念必须是基本概念或已定义过的概念;对其它每一命题都给予证明,而在证明中作为论据的命题必须是公理或者已经证明为真实的定理.因此,一门数学的演绎系统就是这门数学的基本概念、公理和定理所构成的逻辑的链条.
    在上述过程中,从认识论的角度来看,任何公理系统的原始概念和公理的选取必须反映现实对象的本质和关系.就是说,应该有它真实的直观背景而不是凭空臆造.其次,从逻辑的角度看,则不能认为一些概念和公理的任意罗列就能构成一个合理的公理系统,而一个有意义的公理系统必须是一个逻辑相容的体系.
    3.【公理化的作用与影响】
    谈到数学公理化的作用,至少可以举出如下四点:
    (1)这种方法具有分析、总结数学知识的作用.凡取得了公理化结构形式的数学,由于定理与命题均已按逻辑演绎关系串联起来,故使用起来也较方便.
    (2)公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创
    (3)数学公理化方法在科学方法论上有示范作用.这种方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用.例如,20世纪40年代波兰的Banach曾完成了理论力学的公理化,而物理学家亦把相对论表述为公理化形式……
    (4)公理化方法所显示的形式的简洁性、条理性和结构的和谐性确实符合美学上的要求,因而为数学活动中贯彻审美原则提供了范例.
    曾经为公理化发展做出贡献的人:
    1.欧几里德
    公理学研究的对象、性质和关系称为“论域”,这些对象、性质和关系,由初始概念表示.例如欧氏《几何原本》中只需取“点”、“直线”、“平面”;“在……之上”、“在……之间”、“叠合”作为初始概念.前三个概念所表示的三类对象和后三个概念所表示的三种关系就是这种几何的论域.按照“一个公理系统只有一个论域”的观点建立起来的公理学,称为实质公理学.这种公理学是对经验知识的系统整理,公理一般具有自明性.因此,欧氏《几何原本》就是实质公理学的典范.
    2.波尔约
    19世纪,青年波尔约产生了与前人完全不同的信念:首先,他认为第五公设不能以其余的公理作为定理来证明;其次,除掉第五公设成立的欧氏几何之外,还可能有第五公设不成立的新几何系统存在.于是,他在剔除第五公设而保留欧氏几何其余公理的前提下,引进与第五公设相反的公理,从而构造了一个全新的几何系统,它与欧氏几何系统相并列.后来人们又证明了这两个部分地相矛盾的几何系统竟是相对相容的,即假定其中之一无矛盾,则另一个必定无矛盾,这样以来,只要这两个系统是无矛盾的,第五公设与欧氏系统的其余公理就必定独立无关.
    


    2楼2012-10-19 13:34
    回复
      波尔约曾将成果送给高斯过目。但由于高斯害怕与康德空间哲学相抵触,是俄国数学家罗巴切夫斯基得到先机。现在人们就用罗巴切夫斯基的名字命名了这一新的几何学,并把一切不同于欧氏几何公理系统的几何系统统称为非欧几何.
      3.帕斯
      德国数学家帕斯(Moritz Pasch,1843-1930)通过对射影几何公理化基础的纯逻辑的探讨,第一次从理论上提出了形式公理学的思想.他认为,几何学如果要成为一门真正的演绎科学,最根本的是推导的进行必须完全独立于几何概念的涵义,同样地也必须不以图形为依据,而所考虑的只能是被命题或定义所确定的几何概念的关系。有些公理虽然是由经验提出来的,但当选出一组公理之后,必须不再涉及经验及物理意义.公理决不是自明的真理,而是用以产生任一特殊几何的假定.帕斯的这些思想已经表达了形式公理系统的特征.
      4.希尔伯特
      希尔伯特几何公理系统,除了有几何模型外,还可以有其它模型(如算术模型),所以它是一个形式公理系统,可以把其初始概念和公理看成是没有数学内容的,数学内容是通过解释赋予它们的,初始概念和公理完全可以用形式语言来陈述.因此,自从《几何学基础》问世以后,不仅公理化方法进入了数学的其它各个分支,而且也把公理化方法本身推向了形式化的阶段.

      【公理系统的相容性证明】
      一个公理系统的相容性是至关重要的,因为一个理论体系不能出现矛盾.而独立性和完备性的要求则是次要的.因为在一个理论体系中,如果有多余的公理,对于理论的展开没什么妨碍;如果独立的公理不够用,数学史上常常补充一些公理,逐步使之完备.
      【问题的产生及历史发展背景】
      关于相容性征明这一概念的产生和历史发展的背景是这样的:自从罗巴切夫斯基几何诞生后,由于罗氏平行公理(过平面上一已知直线外的一点至少可以引两条直线与该已知直线平行)如此地为常识所不容,这才真正激起了人们对于数学系统的无矛盾性证明的兴趣和重视.后来,庞加莱(Poincare‘,1854-1912)在欧氏半平面上构造了罗氏几何的模型,把罗氏系统的相容性证明通过一个模型化归为欧氏系统的相容性证明,但却由此导致了人们对欧氏系统相容性的重重疑虑.幸亏那时已经有了解析几何,这就等于在实数系统中构造了一个欧氏几何的模型.这就把欧氏几何的无矛盾性归结到了实数论的相容性.那么实数论的相容性如何?戴德金(Dedekind,1831-1916)把实数定义为有理数的分划,也即有理数的无穷**,因而把这个无矛盾性归结到了自然数系统的无矛盾性.又由于弗雷格( Frege,1848-1925)的自然数的概念是借助**的概念加以定义的,因此,归来归去还是把矛盾集中到**论那里去了.那么**论的相容性如何?事实上,**论的相容性正处于严重的“危机”之中,以致这种相容性的证明至今还未解决.
      【庞加莱模型和相对相容性证明】
      庞加莱为证明罗氏几何的相容性,在欧氏系统中构造了一个罗氏几何的模型.即在欧氏平面上划一条直线a将其分成上、下两个半平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任一长为半径的半圆周作为罗氏几何的直线,然后对如此规定的罗氏几何元素一一验证罗氏平行公理是成立的。过罗氏平面上任一罗氏直线l外的一点P,确实可以作出两条罗氏直线与l平行.因为欧氏直线a上的点不是罗氏几何系统的元素,所以两个半圆相交于直线a上某一点则应看作相交于无穷远点,从而在有穷范围内永不相交。
      这样以来,如果罗氏系统在今后的展开中出现了正、反两个互相矛盾的命题的话,则只要按上述规定之几何元素间的对应关系进行翻译,立即成为互相矛盾的两个欧氏几何定理.从而欧氏系统就矛盾了.因此,只要承认欧氏系统是无矛盾的,那么罗氏系统一定也是相容的.这就把罗氏系统的相容性证明通过上述庞卡莱模型化归为欧氏系统的相容性证明.这种把一个公理系统的相容性证明化归为另一个看上去比较可靠的公理系统的相容性证明,或者说依靠一个数学系统的无矛盾性来保证另一个数学系统的协调性叫做数学系统的相对相容性证明.
      【相容性证明对数学发展的影响】
      由于相对相容性的出现,使人们对欧氏系统的相容性也忧心重重.而更糟的是,在罗氏系统的展开中人们又发现,罗氏几何空间的极限球面上也可构造欧氏模型,即欧氏几何的全部公理能在罗氏的极限球上实现,于是欧氏几何的相容性又可由罗氏几何的相容性来保证!这说明欧氏与罗氏的公理系统虽然不同,但却是互为相容的.人们当然不满足于两者互相之间的相对相容性证明,因为看上去较为合理的欧氏系统的无矛盾性竟要由看上去很不合理的罗氏系统来保证,这是难以令人满意的.于是人们开始寻求直接的相容性证明,本世纪初数学基础论就诞生了.由于在这一工作中所持的基本观点不同,在数学基础论的研究中形成了诸如逻辑主义派、直觉主义派和形式公理学派三大流派.这些流派虽然并未最后解决相容性证明问题,但在方法论上却各有贡献,他们的方法论、思想方法对于数学的研究与发展都具有重要的意义,有些还值得进一步分析、探讨、继承和发展.


      


      3楼2012-10-19 13:34
      回复
        附:【庞加莱猜想】
        在1904年发表的一组论文中,庞加莱提出以下猜想:任一单连通的、封闭的三维流形与三维球面同胚。 上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个苹果表面的橡皮带,那我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。图:

        


        4楼2012-10-19 13:35
        回复
          注:
          此文中提到的逻辑,指的是“形式逻辑”。


          5楼2012-10-19 13:36
          回复