.莫比乌斯环、克菜因瓶及宇宙的边界

一个纸条有正面和反面,如果不充许从边界绕过去,有没有办法从一面到另一面呢?有,就是把这个纸条的一端扭转180度再和另一端连接起来,形成一个莫比乌斯环(如上面左图)。实际上,这个扭曲的二维结构是没有正反面之分的,仔细观察就会发现,只要你在这个纸面上沿着一个方向走,就能够经过这个纸条的所有位置并且回到原点。然而,莫比乌斯环表面虽然是一个二维结构,但是它本身却只能在三维空间存在。
那么三维空间有没有对应的结构呢?有,就是克菜因瓶(如右图)。在这个奇怪的管状物里行走,你能经历所有空间的正面和反面。其实这只是一种简化的表示,真正的克菜因瓶是不可能在三维空间里画出来的,因为它本身存在于四维空间。克菜因瓶好像有一个与自己相交的部分,然而在四维空间它并不相交,就像莫比乌斯环在三维空间不相交一样。
事实上,我们的宇宙就是一个由扭曲的空间形成的克菜因瓶结构。这个宇宙的大小是有限的,但是并没有边界,你沿着同一个方向走会经过该直线上所有空间的正面和反面并且回到起点。