:∵a(n+1)=√(an ^2+2)
两边平方得:[a(n+1)]^2=(an)^2+2
化为:[a(n+1)]^2-2(n+1)=(an)^2-2n
设:bn=(an)^2-2n
则bn是公比为1的等比数列
故:bn=(an)^2-2n=b1=a1^2-2×1=-1
(an)^2=2n-1
又因为an≥0
∴ an=√(2n-1)
两边平方得:[a(n+1)]^2=(an)^2+2
化为:[a(n+1)]^2-2(n+1)=(an)^2-2n
设:bn=(an)^2-2n
则bn是公比为1的等比数列
故:bn=(an)^2-2n=b1=a1^2-2×1=-1
(an)^2=2n-1
又因为an≥0
∴ an=√(2n-1)