┌ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┐
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
└ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┘
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ · ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┤
└ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┘