随意超吧 关注:2贴子:18
  • 1回复贴,共1

Fibonacci Sequence

只看楼主收藏回复

F[1]==F[2]==1
F[n+2]==F[n+1]+F[n]
F[n]==((1+Sqrt[5])^n-(1-Sqrt[5])^n)/(2^n Sqrt[5])


IP属地:广东1楼2013-07-27 23:19回复
    (*diagonals in Pascal's triangle*)
    Column@Table[ Binomial[n - i, i], {n, 0, 10}, {i, 0, Floor[n/2]}]
    {1}
    {1,1}
    {1,2}
    {1,3,1}
    {1,4,3}
    {1,5,6,1}
    {1,6,10,4}
    {1,7,15,10,1}
    {1,8,21,20,5}
    {1,9,28,35,15,1}
    F[n]==Sum[ Binomial[n - i - 1, i], {i, 0, Floor[(n-1)/2]}]


    IP属地:广东2楼2013-07-27 23:51
    回复