随意超吧 关注:2贴子:18
  • 7回复贴,共1

Differentiation Rules

只看楼主收藏回复

Product rule
Dt[f[x]g[x],x]==
Limit[(f[x+t]g[x+t]-f[x]g[x])/t,t->0]==
Limit[(f[x+t]g[x+t]-f[x+t]g[x]+f[x+t]g[x]-f[x]g[x])/t,t->0]==
Limit[f[x+t](g[x+t]-g[x])/t+g[x](f[x+t]-f[x])/t,t->0]==
f[x]g'[x]+g[x]f'[x]


IP属地:广东1楼2013-08-09 21:13回复
    Quotient rule
    Dt[f[x]/g[x],x]==
    Dt[f[x],x]/g[x]+f[x]Dt[1/g[x],x]==
    f'[x]/g[x]+f[x]Dt[1/g[x]]/Dt[g[x]]Dt[g[x],x]==
    f'[x]/g[x]-f[x]/g[x]^2g'[x]==
    (f'[x]g[x]-f[x]g'[x])/g[x]^2


    IP属地:广东2楼2013-08-09 21:18
    回复
      Dt[x^a, x] ==
      Dt[E^Log[x^a], x] ==
      Defer[Dt[E^Log[x^a]]/Dt[Log[x^a]]]*Dt[a*Log[x], x] ==
      (a*E^(a*Log[x]))/x ==
      (a*x^a)/x ==
      a*x^(a - 1)


      IP属地:广东3楼2013-08-10 23:04
      回复
        Dt[Log[a, x], x] ==
        Limit[(Log[a, t + x] - Log[a, x])/t, t -> 0] ==
        Limit[Log[a, (t + x)/x]/t, t -> 0] ==
        Limit[Log[a, t/x + 1]/t, t -> 0] ==
        Limit[x/t*Log[a, t/x + 1]/x, t -> 0] ==
        Limit[Log[a, (t/x + 1)^(x/t)]/x, t -> 0] ==
        Log[a, Limit[(t/x + 1)^(x/t), t -> 0]]/x ==
        Log[a, e]/x ==
        1/(x*Log[a])


        IP属地:广东4楼2013-08-11 12:20
        回复
          Dt[a^x, x] ==
          Limit[(a^(t + x) - a^x)/t, t -> 0] ==
          a^x*Limit[(a^t - 1)/t, t -> 0] ==
          a^x*Limit[(a^t - 1)/Log[a, (a^t - 1) + 1], t -> 0] ==
          a^x/Limit[Log[a, (a^t - 1) + 1]/(a^t - 1), t -> 0] ==
          a^x/Limit[Log[a, ((a^t - 1) + 1)^(1/(a^t - 1))], t -> 0] ==
          a^x/Log[a, Limit[(b + 1)^(1/b), b -> 0]] ==
          a^x/Log[a, E] ==
          a^x*Log[a]


          IP属地:广东5楼2013-08-11 12:40
          回复
            Dt[Sin[x], x] ==
            Limit[(Sin[t + x] - Sin[x])/t, t -> 0] ==
            Limit[(2*Sin[t/2]*Cos[t/2 + x])/t, t -> 0] ==
            Limit[(Sin[t/2]*Cos[t/2 + x])/(t/2), t -> 0] ==
            Limit[Cos[t/2 + x], t -> 0] ==
            Cos[x]


            IP属地:广东6楼2013-08-11 12:43
            回复
              Dt[Cos[x], x] ==
              Limit[(Cos[t + x] - Cos[x])/t, t -> 0] ==
              Limit[-((2*Sin[t/2]*Sin[t/2 + x])/t), t -> 0] ==
              -Limit[(Sin[t/2]*Sin[t/2 + x])/(t/2), t -> 0] ==
              -Limit[Sin[t/2 + x], t -> 0] ==
              -Sin[x]


              IP属地:广东7楼2013-08-11 12:45
              回复


                8楼2013-11-05 16:34
                回复