直线和圆锥曲线的问题是解析几何中的典型问题,也是考试中容易出大题的考点。解决这类问题的关键就是要明白直线和圆锥曲线问题的本质。直线接圆锥曲线就会在曲线内形成弦,这是一个最大的出题点,根据弦就可以涉及到弦长,另外线和圆锥曲线有交点,涉及到交点就会涉及到坐标的一些问题,若是再和交点、原点等一些特殊点构成一些关系还会涉及到角度问题。解析几何就是利用代数方法解决几何问题,因此这些几何上的角度,弦长等一些关系都要转化成坐标,以及方程的形式。但是问题的本质还是几何问题,因此更多的利用圆锥曲线的几何性质可以化简计算。比如,在坐标法中向量是和几何问题结合最紧密的方法,因此涉及到角度等一些问题可以用向量去做,这样会比直接利用直线的夹角公式计算要稍简单一些。
从解题思路上来说解决直线与圆锥曲线的问题主要有两各种方法,第一种是将直线方程与圆锥曲线方程联立。一般来说都是要用参数设出直线方程。个人感觉将直线设为代谢率的方式比较好:若是已知直线过某些点(比如圆锥曲线的顶点、焦点)可以设为y-y0=k(x-x0),或是y=kx+b,但是设成这两种形式都要考虑到直线斜率不存在的问题即x=x0,在解题中不妨先考虑这种情况,以免忘记。方程联立后,就是要利用已知条件找到参数与参数之间或是与已知量之间的关系,这时一般会用到韦达定理进行转化,不另外不要忘了考虑判别式。
第二种方法是点差法。这种方法是将两个交点的坐标先带入圆锥曲线方程,然后进行做差,这样就会出现平方相减或相加的项,方便转化和化简,这里在化简和转化的过程中主要利用的是直线方程,因此貌似大部分题的参数都在直线中。
这类题的计算量一般会比较大,在解题时可以使用一些小技巧简化计算。比如涉及到焦点的问题看看可不可以用圆锥曲线的第二定义转化。利用第二定义就可以将点到点之间的距离转化为点到直线之间的距离,而且一般情况下直线还是垂直于x轴或y轴的,这样直接就和坐标联系上了,这种方法在圆锥曲线中含有参数的时候还是挺好使的,一般在答题中应用不多,小题中会有不少应用,因此还是要掌握好第二定义。
一般来说,这种题比较怕遇见第一问是求轨迹方程的问题(其实这种题还是挺常见的)。这是就要确保轨迹方程求的正确。一般轨迹方程不会是生算出来的,需要利用一下圆锥曲线的第一定义或是第二定义。解答完毕后一定要表明曲线的范围。因为根据已知条件求得的有可能只是某曲线的一部分,如双
从解题思路上来说解决直线与圆锥曲线的问题主要有两各种方法,第一种是将直线方程与圆锥曲线方程联立。一般来说都是要用参数设出直线方程。个人感觉将直线设为代谢率的方式比较好:若是已知直线过某些点(比如圆锥曲线的顶点、焦点)可以设为y-y0=k(x-x0),或是y=kx+b,但是设成这两种形式都要考虑到直线斜率不存在的问题即x=x0,在解题中不妨先考虑这种情况,以免忘记。方程联立后,就是要利用已知条件找到参数与参数之间或是与已知量之间的关系,这时一般会用到韦达定理进行转化,不另外不要忘了考虑判别式。
第二种方法是点差法。这种方法是将两个交点的坐标先带入圆锥曲线方程,然后进行做差,这样就会出现平方相减或相加的项,方便转化和化简,这里在化简和转化的过程中主要利用的是直线方程,因此貌似大部分题的参数都在直线中。
这类题的计算量一般会比较大,在解题时可以使用一些小技巧简化计算。比如涉及到焦点的问题看看可不可以用圆锥曲线的第二定义转化。利用第二定义就可以将点到点之间的距离转化为点到直线之间的距离,而且一般情况下直线还是垂直于x轴或y轴的,这样直接就和坐标联系上了,这种方法在圆锥曲线中含有参数的时候还是挺好使的,一般在答题中应用不多,小题中会有不少应用,因此还是要掌握好第二定义。
一般来说,这种题比较怕遇见第一问是求轨迹方程的问题(其实这种题还是挺常见的)。这是就要确保轨迹方程求的正确。一般轨迹方程不会是生算出来的,需要利用一下圆锥曲线的第一定义或是第二定义。解答完毕后一定要表明曲线的范围。因为根据已知条件求得的有可能只是某曲线的一部分,如双