Fx^2(x)=P{X^2<=x} ,
当x>=0, 有P{X^2<=x}=P{-x^0.5<=X<=x^0.5}=积分(-x^0.5,x^0.5) fx(t) dt
= 积分(0,x^0.5) dt =x^0.5 x属于[0,1)
同理 Fy^2(y)= y^0.5 y属于[0,1)
所以 fx^2(x)=1/(2x^0.5) ,fy^2(y)= 1/(2y^0.5)
F(x^2,y^2)=P{X^2<=x,Y^2<=y)
当x,y>=0,有F(x^2,y^2)=P{-x^0.5<=X<=x^0.5, -y^0.5<=Y<=y^0.5}
=4积分(0,x^0.5)积分(0,y^0.5) 1/4 dxdy=(xy)^0.5
所以 f(x^2,y^2)=1/[4(xy)^0.5]=fx^2(x) fy^2(y)
=》X^2 & Y^2 独立