设斜率k 所求长度w
直线l:y=kx+root3-9k
w^2=(9-root3/k)^2+(root3-9k)^2
dw^2/dx=84+81k^2-18root3k+18root3/k^2-6/k^3
显然在[url]http://一阶导数[/url]为0时w^2有极小值 也就是w有极小值
令27k^4-3root3k^3+3root3k-1=0
[url]http://二阶导数[/url]为108k^3-9root3k^2+3root3
用牛顿极限求根公式
kn+1=kn-f(kn)/f*(kn)
k=(limit as n approaches infinity) of [kn-(27kn^4-3root3kn^3+3root3kn-1)/(108kn^3-9rot3kn^2+3root3)]
=-root3/3 或 root3/9
直线l截x y轴于正半轴说明k<0
k=-root3/3
wmin
=w|dw^2/dx=0
=w|dw/dx=0
=w|dy/dx=-root3/3
=root[(9-root3/(-root3/3))^2+(root3-9(-root3/3))^2]
=8root3
答案显然是8根号3