数学吧 关注:885,598贴子:8,726,901
  • 3回复贴,共1

有没有人懂得贝尔曼方程的

只看楼主收藏回复

最近看贝尔曼方程,看不懂,有没有大神能指教一下的


来自Android客户端1楼2014-10-07 09:42回复
    基本原理  动态规划的理论基础是最优化原理和嵌入原理。最优化原理  一个最优策略,具有如下性质:不论初始状态和初始决策(第一步决策)如何,以第一步决策所形成的阶段和状态作为初始条件来考虑时,余下的决策对余下的问题而言也必构成最优策略。最优化原理体现了动态规划方法的基本思想。嵌入原理  一个具有已知初始状态和固定步数的过程总可以看作是初始状态和步数均不确定的一族过程中的一个特殊情况。这种把所研究的过程嵌入一个过程族的原理称为嵌入原理。通过研究过程族的最优策略族的共同性质得出一般通解,此通解自然也适用于原来的特殊问题。动态规划的基本方法就是根据嵌入原理把一个多步决策问题化为一系列较简单的一步决策问题,可显著降低数学处理上的难度。贝尔曼方程  应用最优化原理和嵌入原理可推导出动态规划的基本方程,称为贝尔曼方程。它具有下面的形式:式中N表示多段决策过程的总段数,F(xk,uk)为标量函数,表示由第k段到第k+1段的过程中基于状态xk和决策uk的性能损失,表示以xk+1为初始状态的后N-(k+1)段分过程的最优性能目标,xk+1=f(xk,uk)是基于第k段的状态 xk和决策uk而得到的第k+1段的状态向量,【·】表示选择决策uk使【·】取极小值。这是一个逆向递推方程。采用迭代法按k=N-1,N-2,…,1,0顺序求解贝尔曼方程,即可得到N段决策过程的最优策略{uk,k=0,1,2,…,N-1}和最优轨线{xk,k=0,1,2,…,N },而最优性能值为J壨(x0)。


    2楼2014-10-07 10:07
    收起回复