丁学港吧 关注:2贴子:128
  • 6回复贴,共1
数学公式


来自手机贴吧1楼2014-10-10 20:55回复
    a^3-b^3=a^3+a^2b+ab^2-b^3-a^2b-ab^2=(a^3+a^2b+ab^2)-(b^3+a^2b+ab^2)=a(a^2+ab+b^2)-b(a^2+ab+b^2)。=(a-b)(a^2+ab+b^2)


    来自手机贴吧2楼2014-10-10 20:56
    回复
      (a+b)^3=(a+b)(a+b)²=(a+b)(a²+2ab+b²)=a³+2a²b+ab²+a²b+2ab²+b³=a³+3a²b+3ab²+b³


      来自手机贴吧3楼2014-10-10 20:57
      回复
        sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A


        来自手机贴吧4楼2014-10-10 20:59
        回复
          半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)


          来自手机贴吧5楼2014-10-10 20:59
          回复
            和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA


            来自手机贴吧6楼2014-10-10 21:00
            回复
              万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[ a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} (


              来自手机贴吧7楼2014-10-10 21:02
              回复