1. 一张纸折一百次,厚度等于多少?
我自己算出的结果:752761638954869358669833729.20615 约等于7.5乘以10的26次方。
2. 一张纸最多折几次?
以下引用文章:
算算就知道了。如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/(2^(0.5*n)),厚度变为2^n*h,当满足n>2/3*(log2(l/h)-1)时无法折叠。根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。
最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2^100*0.001m=1267650600228229401496703205.376m=1.267e+27m,月球到地球的距离为40万公里左右,粗略为4e+8m,因此远远的超过了月地距离。
我自己算出的结果:752761638954869358669833729.20615 约等于7.5乘以10的26次方。
2. 一张纸最多折几次?
以下引用文章:
算算就知道了。如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/(2^(0.5*n)),厚度变为2^n*h,当满足n>2/3*(log2(l/h)-1)时无法折叠。根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。
最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2^100*0.001m=1267650600228229401496703205.376m=1.267e+27m,月球到地球的距离为40万公里左右,粗略为4e+8m,因此远远的超过了月地距离。