注意到三角形中大角对大边,所以不妨设
a≥b≥c
而cos(x)在(0,pi)中严格单减
所以cos(A)≤cos(B)≤cos(C)
根据拆比雪夫总和不等式有
(1/a+b+c)[acos(A)+bcos(B)+ccos(C)]≤(1/3)[(a+b+c)/(a+b+c)](cosA+cosB+cosC)=cosA+2cos[(B+C)/2]cos[(B-C)/2] ≤cosA+2cos[(B+C)/2]=1-2[sin(A/2)]^2+2sin(A/2)=-2[(sin(A/2)-1/2]^2+3/2 ≤3/2