微型生态系统吧 关注:6贴子:43
  • 3回复贴,共1
能量是生态系统的动力,是一切生命活动的基础。一切生命活动都伴随着能量的变化,没有能量的转化,也就没有生命和生态系统。生态系统的重要功能之一就是能量流动,能量在生态系统内的传递和转化规律服从热力学的两个定律。


来自Android客户端1楼2014-11-17 22:14回复
    热力学第一定律
    热力学第一定律可以表述如下:“在自然界发生的所有现象中,能量既不能消灭也不能凭空产生,它只能以严格的当量比例由一种形式转变为另一种形式”。因此热力学第一定律又称为能量守恒定律。
    依据这个定律可知,一个体系的能量发生变化,环境的能量也必定发生相应的变化,如果体系的能量增加,环境的能量就要减少,反之亦然。对生态系统来说也是如此,例如,生态系统通过光合作用所增加的能量等于环境中太阳所减少的能量,总能量不变,所不同的是太阳能转化为潜能输入了生态系统,表现为生态系统对太阳能的固定。
    人们都知道,非生命自然界发生的变化都不必借助外力的帮助而能自动实现,热力学把这样的过程称为自发过程或自动过程。例如,热自发地从高温物体传到低温物体,直到两者的温度相同为止。而与此相反的过程都不能自发地进行,可见自发过程的共同规律就在于单向趋于平衡状态,决不可能自动逆向进行。或者说任何自发过程都是热力学的不可逆过程。
    应当指出的是:不应把自发过程理解为不可能逆向进行,问题在于是自动还是消耗外功,借助外功是可逆向进行的。例如,生态系统中复杂的有机物质分解为简单的无机物质是一种自发过程,但无机物质决不可能自发地合成为有机物质,借助于外功太阳能却可以实现,这就是光合作用,不过这不是自发或自动的。既然任何自发过程总是单向趋于平衡状态,决不可能自动逆向进行,由此可以推测体系必定有一种性质,它只视体系的状态而定而与过程的途径(或进行的方式)无关。
    可以大致打一个比喻:假定有水位差的存在,水自动地从高水位流向低水位的趋向必定存在,但水流是快是慢显然都不可能改变水向低水位方向流动的自发倾向。这就是说,要研究给定的始态和终态条件下自发过程的方向,可以不考虑过程的细节和进行的方式。为了判断自发过程进行的方向和限度,可以找出能用来表示各自发过程共同特征的状态函数。熵(entropy)和自由能就是热力学中两个最重要的状态函数,它们只与体系的始态和终态有关而与过程的途径无关。


    来自Android客户端2楼2014-11-17 22:14
    回复
      正如这些规律控制着非生物系统一样。热力学定律决定着生态系统利用能量的限度。事实上,生态系统利用能量的效率很低,虽然对能量在生态系统中的传递效率说法不一,但最大的观测值是30%,一般说来,从供体到受体的一次能量传递只能有5~20%的可利用能量被利用,这就使能量的传递次数受到了限制,同时这种限制也必然反映在复杂生态系统的结构上(如食物链的环节数和营养级的级数等)。由于物质的传递并不受热力学定律的限制,因此生物量金字塔和数量金字塔有时会表现为下窄上宽的倒塔形,但这并不意味着高营养级生物所利用的能量会多于低营养级生物所传递的能量。


      来自Android客户端4楼2014-11-17 22:16
      回复
        能量通过食物链逐级传递。太阳能是所有生命活动的能量来源,它通过绿色植物的光和作用进入生态系统,然后从绿色植物转移到各种消费者。


        来自Android客户端5楼2014-11-17 22:23
        回复