物理吧 关注:1,274,623贴子:5,265,454
  • 3回复贴,共1

相同质量的小球同时沿光滑斜面A,B自顶端无初速度下滑,则

只看楼主收藏回复

到达底端时 
A:两小球同时到达 
B:两小球速度相同 
C:两小球动能相同 
D:重力对沿A斜面下滑的小球做功比较多 
斜面倾角不同,高度相同,斜面长度不同

请问:分解重力 通过下滑力可求出加速度aA=gsinα aB=gsinβ 
求下滑时间 tA=√(2sA/gsinα)=√(2sinαh/gsinα)=√(2h/g) 同哩tB=√(2h/g) 
所以同时到达  
上面的分析错了吗? 
但是由于高度相同 转化为动能 那么动能应该相等啊 但是质量也相等 那不是瞬时速度也相等了~?

望高人解惑


1楼2008-04-04 12:10回复
    别沉


    2楼2008-04-04 12:18
    回复
      设斜面高度为h,倾角为θ,下滑时间满足
      h/sinθ=1/2*(gsinθ)*t^2
      t=√2h/g(sinθ)^2;
      显然下滑时间和倾角有关。我不晓得你怎么解出这个的:
      tA=√(2sA/gsinα)=√(2sinαh/gsinα)=√(2h/g);“√(2sinαh/gsinα)”是有问题的。

      最多到达地面时候动能相等,速度不可能相同,因为速度是矢量,有方向。


      IP属地:辽宁3楼2008-04-04 12:23
      回复
        哦看到了 ~汗下 应该是h=sinαs 的 我想成了s=sinαh 罪过啊~
        谢谢了~


        4楼2008-04-04 12:33
        回复