放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。
数列与不等式的综合问题常常出现在高考的后三题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.
数列与不等式的综合问题常常出现在高考的后三题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.