孪生素数的难点在于,它是一个关于素数的具体分布的问题,而我们对素数的具体分布知之甚少。素数定理只告诉我们素数的大体分布,而对于具体一个个素数的位置却无能为力。如同繁星,素数点缀着自然数的夜空,放眼望去,它们朝向无限的地平线愈见稀薄。但要想分清这无限繁星中的每一颗,即使用上最好的望远镜,也无可奈何。
所以,在很长一段时间里,对于孪生素数猜想,人们仍然停留在揣测和估计的层面。
首先尝试直接猜测的,是英国数学家哈代(G. H. Hardy)和李特尔伍德(J. E. Littlewood),他们在1923年开始了一系列的猜测。
素数定理告诉我们,对于足够大的自然数N,在N附近随机抽取一个自然数n,它是素数的概率大概就是(lnN)−1。那么,在同样的区间,随机独立选取的两个数都是素数的概率就是之前概率的平方,也就是(lnN)−2。
那么,在N附近随机抽取一个自然数n,n和n+2是一对孪生素数的概率是否就是大概(lnN)−2呢?很遗憾,并非如此,因为n和n+2并非完全独立的,所以不能直接应用之前的结果。不过这个估计虽不中亦不远,只要乘上一个修正系数,借此表达两个数相差2的性质,就能得到对孪生素数密度的估计:2C2(lnN)−2。在这里,修正系数C2是一个关于所有质数的无穷乘积。如果密度确实如此,那么显然有无限对孪生素数,孪生素数猜想应该是正确的。
实际上,这是所谓“第一哈代-李特尔伍德猜想”的一个特殊情况,难度甚至远高于孪生素数猜想:它不仅隐含了孪生素数猜想,而且对具体的分布作出了精细的估计。虽然上面的论证看上去很诱人,但它并不是一个严谨的证明,因为它的大前提——素数是随机分布的——本来就不成立。素数的分布有着深刻的规律,远远不是一句“随机分布”所能概括的。
但哈代和李特尔伍德并非等闲之辈,作为当时英国的学科带头人,既然提出这个猜想,当然经过了深思熟虑。现在看来,依据之一是,望向无限,素数的分布的确看似随机:对于那些“简单”的操作(比如说加上2)来说,数值越大,越靠近无限的地平线,看上去也越“随机”。所以,在考虑各种素数形式的分布时,假定素数按照素数定理的密度随机分布,不失为一个估计的好办法。更为重要的是,数值计算的结果也与哈代和李特尔伍德的猜测所差无几。这更增添了我们对这个估计的信心。