量子主板吧 关注:1贴子:40
  • 5回复贴,共1

前排科普一下【量子计算机】,来自百度百科

只看楼主收藏回复

量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题


IP属地:广东1楼2016-01-01 13:22回复
    理论背景
    有趣的量子理论量子论的一些基本论点显得并不“玄乎”,但它的推论显得很“玄”。我们假设一个“量子”距离也就是最小距离的两个端点A和B。按照量子论,物体从A不经过A和B中的任何一个点就能直接到达B。换句话说,物体在A点突然消失,与此同时在B点出现。除了神话,你无法在现实的宏观世界找到一个这样的例子。量子论把人们在宏观世界里建立起来的“常识”和“直觉”打了个七零八落。
    薛定谔之猫
    是关于量子理论的一个理想实验。实验内容是:这只猫十分可怜,它被封在一个密室里,密室里有食物有毒药。毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。如果原子核衰变,则放出α粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。这个残忍的装置由奥地利物理学家埃尔温·薛定谔所设计,所以此猫便叫做薛定谔猫。量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道猫是死是活,它将永远处于非死非活的叠加态,这与我们的日常经验严重相违。瑞典皇家科学院2012年10月9日宣布,将2012年诺贝尔物理学奖授予法国物理学家塞尔日·阿罗什和美国物理学家戴维·瓦恩兰,以表彰他们在量子物理学方面的卓越研究。他说,这两位物理学家用突破性的实验方法使单个粒子动态系统可被测量和操作。他们独立发明并优化了测量与操作单个粒子的实验方法,而实验中还能保持单个粒子的量子物理性质,这一物理学研究的突破在之前是不可想象的。


    IP属地:广东2楼2016-01-01 13:24
    回复
      研究历史
      量子计算机,早先由理查德·费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。[1] 量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等纸上谈兵状态。一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法[3] 后,因其对通行于银行及网络等处的RSA加密算法破解而构成威胁后,量子计算机变成了热门的话题。除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。[1] 20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。[1] 1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子计算机能完成对数运算,[4] 而且速度远胜传统计算机。这是因为量子不像半导体只能记录0与1,可以同时表示多种状态。如果把半导体计算机比成单一乐器,量子计算机就像交响乐团,一次运算可以处理多种不同状况,因此,一个40位元的量子计算机,就能解开1024位元的电子计算机花上数十年解决的问题。[1] 随着计算机科学的发展,史蒂芬·威斯纳在1969年最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)年发表。史蒂芬·威斯纳的文章发表于1983年[8]。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼在一个著名的演讲中提出利用量子体系实现通用计算的想法。紧接着1985年大卫·杜斯提出了量子图灵机模型 [9]。人们研究量子计算机最初很重要的一个出发点是探索通用计算机的计算极限。当使用计算机模拟量子现象时,因为庞大的希尔伯特空间而数据量也变得庞大。一个完好的模拟所需的运算时间则变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减少,从而量子计算机的概念诞生。


      IP属地:广东3楼2016-01-01 13:25
      回复
        外国进展
        1920年,奥地利人埃尔温·薛定谔、爱因斯坦、德国人海森伯格和狄拉克,共同创建了一个前所未有的新学科——量子力学。量子力学的诞生为人类未来的第四次工业革命打下了基础。在它的基础上人们发现了一个新的技术,就是量子计算机。[1] 量子计算机的技术概念最早由理查得·费曼提出,后经过很多年的研究这一技术已初步见成效。美国的洛斯阿拉莫斯和麻省理工学院、IBM、和斯坦福大学、武汉物理教学所、清华大学四个研究组已实现7个量子比特量子算法演示。2001年,科学家在具有15个量子位的核磁共振量子计算机上成功利用秀尔算法对15进行因式分解。
        2005年,美国密歇根大学的科学家使用半导体芯片实现离子囚笼(ion trap)。
        2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机,但其作用仅限于解决一些最优化问题,与科学界公认的能运行各种量子算法的量子计算机仍有较大区别。
        2009年,耶鲁大学的科学家制造了首个固态量子处理器。[6] 2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。同年,英国布里斯托尔大学的科学家研制出基于量子光学的量子计算机芯片,可运行秀尔算法。
        2010年3月31日,德国于利希研究中心发表公报:德国超级计算机成功模拟42位量子计算机,该中心的超级计算机JUGENE成功模拟了42位的量子计算机,在此基础上研究人员首次能够仔细地研究高位数量子计算机系统的特性。
        2011年4月,一个成员来自澳大利亚和日本的科研团队在量子通信方面取得突破,实现了量子信息的完整传输。
        2011年5月11日, 加拿大的D-Wave System Inc. 发布了一款号称 “全球第一款商用型量子计算机”的计算设备“D-Wave One”。该量子设备是否真的实现了量子计算还没有得到学术界广泛认同。同年9月,科学家证明量子计算机可以用冯·诺依曼架构来实现。
        同年11月,科学家使用4个量子位成功对143进行因式分解。
        2012年2月,IBM声称在超导集成电路实现的量子计算方面取得数项突破性进展。
        同年4月,一个多国合作的科研团队研发出基于金刚石的具有两个量子位的量子计算机,可运行Grover算法,在95%的数据库搜索测试中,一次搜索即得到正确答案。该研究成果为小体积、室温下可正常工作的量子计算机的实现提供可能。
        同年9月,一个澳大利亚的科研团队实现基于单个硅原子的量子位,为量子储存器的制造提供了基础。
        同年11月,首次观察到宏观物体中的量子跃迁现象。
        2013年5月D-Wave System Inc宣称NASA和Google共同预定了一台采用512量子位的D-Wave Two量子计算机。


        IP属地:广东5楼2016-01-01 13:28
        回复
          国内突破
          2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队首次成功实现了用量子计算机求解线性方程组的实验。相关成果发表在2013年6月7日出版的《物理评论快报》上,审稿人评价“实验工作新颖而且重要”,认为“这个算法是量子信息技术最有前途的应用之一”。据介绍,线性方程组广泛应用于几乎每一个科学和工程领域。日常的气象预报,就需要建立并求解包含百万变量的线性方程组,来实现对大气中温度、气压、湿度等物理参数的模拟和预测。而高准确度的气象预报则需要求解具有海量数据的方程组,假使求解一个亿亿亿级变量的方程组,即便是用现在世界上最快的超级计算机也至少需要几百年。[1] 美国麻省理工学院教授塞斯·罗伊德等提出了用于求解线性方程组的量子算法,利用GHz时钟频率的量子计算机将只需要10秒钟。该研究团队发展了世界领先的多光子纠缠操控技术。实验的成功标志着我国在光学量子计算领域保持着国际领先地位。[14]


          IP属地:广东6楼2016-01-01 13:29
          回复
            工作原理
            普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。[1] 想象一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们已经完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。[1] 从数学抽象上看,量子计算机执行以集合为基本运算单元的计算,普通计算机执行以元素为基本运算单元的计算(如果集合中只有一个元素,量子计算与经典计算没有区别)。[1] 以函数y=f(x),x∈A为例。量子计算的输入参数是定义域A,一步到位得到输出值域B,即B=f(A);经典计算的输入参数是x,得到输出值y,要多次计算才能得到值域B,即y=f(x),x∈A,y∈B。[1] 量子计算机有一个待解决的问题,即输出值域B只能随机取出一个有效值y。虽然通过将不希望的输出导向空集的方法,已使输出集B中的元素远少于输入集A中的元素,但当需要取出全部有效值时仍需要多次计算。


            IP属地:广东7楼2016-01-01 13:31
            回复