在工程设计的各学科当中,机械设计是发展最早,且已经发展得日臻完善的学科。机械这种东西比较直观,所有的东西都摆在面上,好不好使一目了然,当造成破坏和事故的时候,也更容易遭人诟病,使你无处遁形,也不好狡辩。
机械设计的范围很广,天上飞的,地上跑的各种各样的东西,当你拆了电缆、卸掉管路以后,基本上就算是机械结构。许多人认为:‘水、电、风、气’的家伙都是有专业的,人家是‘术业有专攻’,但你要是搞机械的,大家就可以认为你是‘万金油’,在总结一个现场故障的时候,当别人都有理由逃遁以后,剩下的那个倒霉家伙就是你,即使就真的是人家的毛病,只要别人稍稍耍一点赖,说他不明白,他就可以安然脱逃,领导是绝对不会允许你逃走的,因为你是机械专业的。所以,为避免尴尬,许多的东西都是你要学习的。
在机械专业混了不少年的事,虽然机械行业看似庞杂,好像没有什么头绪,似乎不知从哪里下手,但我习惯上总体将机械分成两大类:一类是‘运动结构’,另一类是‘静态结构’。运动结构可以从飞行装置算起,从航天器,到飞行器,再到各种运动的设备,本质都是一样的东西。静态结构包含各种桥梁、建筑结构、各种工业的仓体、支撑结构和各种梁体、底座、绗架、网架等等。相对而言,机械设计的‘人才’也可以分成两类,一类是擅长设计‘运动结构’的家伙,另一类人才是善于设计‘静态结构’的。
除了人才以外,还有一部分是混在机械设计领域里的家伙,这部分人里面有一部分是老板,自称懂机械,实际是一知半解,他们不需要理解具体的结构,只要挣钱就好,这类老板不好相处。另一部分是学什么都不明白,基本上是抄了一辈子别人的图纸的笨家伙,鄙人就属于这类人。
许多搞机械的、自认为是有天赋的家伙自己就瞧不起稿‘静态结构’的其他人,他们觉得设计各种支撑梁、连杆、绗架、底座,以至于是设计斜拉结构和悬索结构的人都是没有什么水平的人,干这种活体现不了人生的价值,事实并不是这样的。当一个重载箱型梁破坏的时候,能说得清楚是什么原因导致破坏的人实际上并不是很多,这正说明懂得设计这种东西的人其实不多。
除此以外,什么时候用绗架,什么时候用箱型梁,其各自的载荷特点和承载方式也是许多‘聪明人’说不清楚的。我国因为没有工程学的教育,大家又都学的很窄,纯理论的课堂教育。于是,很多的问题都说不清。
计算一个承载结构,不外乎是计算强度、刚度和结构的稳定性。计算强度是比较简单的事情,你只要上过中专,你就应该很明确地计算出一个断面的强度,无论断面的结构有多复杂,就是花费的时间长短的问题。假如你说不会算,谁都帮不上你,只有再回学校念书。而刚度的计算就比较复杂一些,要考虑各种工况,考虑最复杂的一种组合状态,这就不是学校里能学到的东西了,想学明白了,第一要有好的师父,师父就不明白,你学不明白。第二,就是你要肯学,要下功夫。
比较复杂的问题是计算一个结构的稳定性,它不仅要考虑工况,许多外在的条件你必须要考虑进去。比如:当你设计一个大型的料仓和附属结构的时候,要考虑的因素就特别多,例如,风雪引起的荷载,地震的不同振型引起的破坏效应等等东西。就仓体的支撑形式而言,条件许可的时候,要尽可能采用较为‘柔和’的多柱支撑结构,在地震过程中,它的‘弹性’和‘柔软性’都比较好,在承受以‘扭转’振型为主的地震破坏中,边上的柱子的联结节点可以‘拧断’,以吸收地震的冲击波。当地震过后,虽然有些支撑体破坏了,但整体结构是完整的,达到这种水平,你就基本是‘人才’了。
当不允许采用多柱支撑结构时,支撑形式的的刚度就一定比较大,柱子就不允许被拧断,这时的变形就被转移到仓体本身上去了,你必须选择一个变形/破坏点,通过它的破坏而保留结构的完整性。
采用少柱结构时,就必须要慎重使用型钢作为柱子,有些时候,方形或圆形就可能是你的唯一选择。
重载箱形梁的破坏,你要是细看或者说你看明白了,你就知道:真正由弯矩导致的破坏并不很多。一般情况下,主要是扭转载荷破坏了结构。扭转载荷首先是破坏了箱形梁的纵横筋板之间的焊缝,导致形变的加大,而形变的增加又进一步破坏了纵横结构,最后导致了翼板(有时称梁的‘上下盖板’)与间隔结构的分离,失去了承载的理论位置,最终使整体结构分崩离析。
煤矿上使用的液压支架就是一种典型的重型承载支撑结构,其顶梁、掩护梁、连杆、底座的设计都比较讲究。什么地方要加强是非常重要的,也有许多的学问。在型式试验的时候,虽然只有5000次的循环,看似次数很少,但能撑过试验结束的的架型也并不很多,或多或少都有些问题。尽管现在是有限元时代了,但根本问题并没有完全解决,特别是偏载试验,从根本上讲还是扭转载荷作用的问题许多人没有完全理解透,或者没计算好。
能设计结构巧妙而又经久耐用的钢梁其实并不是一件非常简单的事情,是很看一个人的功底的,它和在学校的学习和后天的锻炼都有很大的关系,别小看了它。但像我这样的笨家伙就干不了。
在结构设计的时候,你需要特别重要的是:除了正常计算弯曲载荷以外,一定要搞清楚最大的扭转载荷,这种载荷可能不一定是什么东西施加给梁体的,也可能是基础的不均匀沉降造成的,假如你当时没有仔细考虑基础沉降的问题,到时候,土建的家伙是救不了你的,你哭都没人理你。
如果是薄板结构,你还必须计算剪切和冲切的问题,你的钢梁是没问题,但人和物件掉到底下去了,你同样有不可推卸的责任。
筋板的联结也是特别重要的东西,焊缝尽可能不放在受力大的位置上,如果必须放在那里,要作额外的加强和支撑,通过增加局部的刚度,减少此处的形变,使变形发生在非焊接位置。当然,书上说了许多特别细致的东西,都特别重要,我不重复什么,以免引起卖弄的嫌疑。
有人会说:你说了一大堆没有用的东西,到底用什么来衡量一个家伙是不是行呢?这个我比较在行,因为我不会干什么,再不知谁会干?岂不是要饿死?其实,衡量一个家伙只用一个标准就够了,他自己设计的结构,随便取一个截面,他都能讲得清楚何处的应力是多大?哪个断面在何种条件下可能破坏,这个截面破坏以后引起的后果是什么?什么条件下,整体结构会崩溃?在众人面前可以讲清这件事,他就合格了。假如是抄图,抄一辈子也还是抄。
假如我们把钢结构叫‘重型结构’的话,铝结构就是‘轻结构’,它的设计与钢结构是完全不同的,或者说根本就是两码事。
机械设计的范围很广,天上飞的,地上跑的各种各样的东西,当你拆了电缆、卸掉管路以后,基本上就算是机械结构。许多人认为:‘水、电、风、气’的家伙都是有专业的,人家是‘术业有专攻’,但你要是搞机械的,大家就可以认为你是‘万金油’,在总结一个现场故障的时候,当别人都有理由逃遁以后,剩下的那个倒霉家伙就是你,即使就真的是人家的毛病,只要别人稍稍耍一点赖,说他不明白,他就可以安然脱逃,领导是绝对不会允许你逃走的,因为你是机械专业的。所以,为避免尴尬,许多的东西都是你要学习的。
在机械专业混了不少年的事,虽然机械行业看似庞杂,好像没有什么头绪,似乎不知从哪里下手,但我习惯上总体将机械分成两大类:一类是‘运动结构’,另一类是‘静态结构’。运动结构可以从飞行装置算起,从航天器,到飞行器,再到各种运动的设备,本质都是一样的东西。静态结构包含各种桥梁、建筑结构、各种工业的仓体、支撑结构和各种梁体、底座、绗架、网架等等。相对而言,机械设计的‘人才’也可以分成两类,一类是擅长设计‘运动结构’的家伙,另一类人才是善于设计‘静态结构’的。
除了人才以外,还有一部分是混在机械设计领域里的家伙,这部分人里面有一部分是老板,自称懂机械,实际是一知半解,他们不需要理解具体的结构,只要挣钱就好,这类老板不好相处。另一部分是学什么都不明白,基本上是抄了一辈子别人的图纸的笨家伙,鄙人就属于这类人。
许多搞机械的、自认为是有天赋的家伙自己就瞧不起稿‘静态结构’的其他人,他们觉得设计各种支撑梁、连杆、绗架、底座,以至于是设计斜拉结构和悬索结构的人都是没有什么水平的人,干这种活体现不了人生的价值,事实并不是这样的。当一个重载箱型梁破坏的时候,能说得清楚是什么原因导致破坏的人实际上并不是很多,这正说明懂得设计这种东西的人其实不多。
除此以外,什么时候用绗架,什么时候用箱型梁,其各自的载荷特点和承载方式也是许多‘聪明人’说不清楚的。我国因为没有工程学的教育,大家又都学的很窄,纯理论的课堂教育。于是,很多的问题都说不清。
计算一个承载结构,不外乎是计算强度、刚度和结构的稳定性。计算强度是比较简单的事情,你只要上过中专,你就应该很明确地计算出一个断面的强度,无论断面的结构有多复杂,就是花费的时间长短的问题。假如你说不会算,谁都帮不上你,只有再回学校念书。而刚度的计算就比较复杂一些,要考虑各种工况,考虑最复杂的一种组合状态,这就不是学校里能学到的东西了,想学明白了,第一要有好的师父,师父就不明白,你学不明白。第二,就是你要肯学,要下功夫。
比较复杂的问题是计算一个结构的稳定性,它不仅要考虑工况,许多外在的条件你必须要考虑进去。比如:当你设计一个大型的料仓和附属结构的时候,要考虑的因素就特别多,例如,风雪引起的荷载,地震的不同振型引起的破坏效应等等东西。就仓体的支撑形式而言,条件许可的时候,要尽可能采用较为‘柔和’的多柱支撑结构,在地震过程中,它的‘弹性’和‘柔软性’都比较好,在承受以‘扭转’振型为主的地震破坏中,边上的柱子的联结节点可以‘拧断’,以吸收地震的冲击波。当地震过后,虽然有些支撑体破坏了,但整体结构是完整的,达到这种水平,你就基本是‘人才’了。
当不允许采用多柱支撑结构时,支撑形式的的刚度就一定比较大,柱子就不允许被拧断,这时的变形就被转移到仓体本身上去了,你必须选择一个变形/破坏点,通过它的破坏而保留结构的完整性。
采用少柱结构时,就必须要慎重使用型钢作为柱子,有些时候,方形或圆形就可能是你的唯一选择。
重载箱形梁的破坏,你要是细看或者说你看明白了,你就知道:真正由弯矩导致的破坏并不很多。一般情况下,主要是扭转载荷破坏了结构。扭转载荷首先是破坏了箱形梁的纵横筋板之间的焊缝,导致形变的加大,而形变的增加又进一步破坏了纵横结构,最后导致了翼板(有时称梁的‘上下盖板’)与间隔结构的分离,失去了承载的理论位置,最终使整体结构分崩离析。
煤矿上使用的液压支架就是一种典型的重型承载支撑结构,其顶梁、掩护梁、连杆、底座的设计都比较讲究。什么地方要加强是非常重要的,也有许多的学问。在型式试验的时候,虽然只有5000次的循环,看似次数很少,但能撑过试验结束的的架型也并不很多,或多或少都有些问题。尽管现在是有限元时代了,但根本问题并没有完全解决,特别是偏载试验,从根本上讲还是扭转载荷作用的问题许多人没有完全理解透,或者没计算好。
能设计结构巧妙而又经久耐用的钢梁其实并不是一件非常简单的事情,是很看一个人的功底的,它和在学校的学习和后天的锻炼都有很大的关系,别小看了它。但像我这样的笨家伙就干不了。
在结构设计的时候,你需要特别重要的是:除了正常计算弯曲载荷以外,一定要搞清楚最大的扭转载荷,这种载荷可能不一定是什么东西施加给梁体的,也可能是基础的不均匀沉降造成的,假如你当时没有仔细考虑基础沉降的问题,到时候,土建的家伙是救不了你的,你哭都没人理你。
如果是薄板结构,你还必须计算剪切和冲切的问题,你的钢梁是没问题,但人和物件掉到底下去了,你同样有不可推卸的责任。
筋板的联结也是特别重要的东西,焊缝尽可能不放在受力大的位置上,如果必须放在那里,要作额外的加强和支撑,通过增加局部的刚度,减少此处的形变,使变形发生在非焊接位置。当然,书上说了许多特别细致的东西,都特别重要,我不重复什么,以免引起卖弄的嫌疑。
有人会说:你说了一大堆没有用的东西,到底用什么来衡量一个家伙是不是行呢?这个我比较在行,因为我不会干什么,再不知谁会干?岂不是要饿死?其实,衡量一个家伙只用一个标准就够了,他自己设计的结构,随便取一个截面,他都能讲得清楚何处的应力是多大?哪个断面在何种条件下可能破坏,这个截面破坏以后引起的后果是什么?什么条件下,整体结构会崩溃?在众人面前可以讲清这件事,他就合格了。假如是抄图,抄一辈子也还是抄。
假如我们把钢结构叫‘重型结构’的话,铝结构就是‘轻结构’,它的设计与钢结构是完全不同的,或者说根本就是两码事。