解:
y ' + [ 2x/ (x^2 -1) ] * y = cosx / (x^2 -1)
P(x) = 2x/ (x^2 -1)
Q(x) = cosx / (x^2 -1)
∫ P(x)dx = ∫ [ 2x/ (x^2 -1) ] dx = ln( /x^2 - 1 / )
e^ { -∫ P(x)dx } =e^{-ln( /x^2 - 1 / ) } = 1 / ( / x^2 - 1 /)
e^ { ∫ P(x)dx } =e^{ln( /x^2 - 1 / ) } = ( / x^2 - 1 /)
y = e^ { -∫ P(x)dx } * [ ∫Q(x) *e^ { ∫ P(x)dx } dx + C ]
= { 1 / ( / x^2 - 1 /) } * [ ∫ { cosx / (x^2 -1)} * ( / x^2 - 1 /)dx + C ]
= { 1 / ( / x^2 - 1 /) } * [ sgn(x^2 -1 ) * ∫ { cosx dx + C ]
= { 1 / ( / x^2 - 1 /) } * [ sgn(x^2 -1 ) * sinx + C ]
= { sgn(x^2 -1 ) / (x^2 - 1) } * [ sgn(x^2 -1 ) * sinx + C ]
= 1 / (x^2 - 1) } * [ ( sgn(x^2 -1 ) )^2 * sinx + C * { sgn(x^2 -1 ) ]
= 1 / (x^2 - 1) } * { 1 * sinx + C1 }
从而 y = (sinx + C ) / (x^2 - 1)
这里,
sgn(u) 为 符号函数,
u > 0 时, sgn(u) = +1
u = 0 时, sgn(u) = 0
u < 0 时, sgn(u) = -1
/u/ = sng(u) * u
u ≠ 0 时, sng(u) = 1
C 是任意常数, 故 C * { sgn(x^2 -1 ) 也是任意常数, 记 C1 = C * { sgn(x^2 -1 )