现在的很多公司,包括 Google 和我现在的公司 Coverity,都喜欢一种“测试驱动的开发”(test-driven development)。它的原理是,在写程序的时候同时写上自动化的“单元测试”(unit test)。在代码修改之后,这些测试可以批量的被运行,这样就可以避免不应该出现的错误。
这不是一个坏主意。我在 Kent 的编译器课程上也使用了很多测试。它们在编译器的开发中是不可缺少的。编译器是一种极其精密的程序,微小的改动都可能带来重大的错误。所以编译器的项目一般都含有大量的测试。
然而测试的构建,应该是在程序主体已经成形的情况下才能进行。如果程序属于创造性的设计,主体并未成形,过早的加入测试反而会大幅度的降低开发效率。所以当我给 Google 开发 Python 静态分析的时候,我几乎没有使用任何测试。虽然组里的成员催我写测试,但是我却知道那只会降低我的开发效率,因为这个程序在几个星期的过程中,被我推翻重来了好几次。要是我一开头就写上测试,这些测试就会碍手碍脚,阻碍我大幅度的修改代码。
测试的另一个副作用是,它让很多人对测试有一种盲目的依赖心理。改了程序之后,把测试跑一遍没出错,就以为自己的代码是正确的。可是测试其实并不能保证代码的正确,即使完全“覆盖”了也是一样。覆盖只是说你的代码被测试碰到过了,可是它在什么条件下碰到的却没法判断。如果实际的条件跟测试时的条件不同,那么实际运行中仍然会出问题。测试的条件往往是“组合爆炸”的数量级,所以你不可能测试所有的情况。唯一能可靠的方法是使用严密的“逻辑推理”,证明它的正确。
这不是一个坏主意。我在 Kent 的编译器课程上也使用了很多测试。它们在编译器的开发中是不可缺少的。编译器是一种极其精密的程序,微小的改动都可能带来重大的错误。所以编译器的项目一般都含有大量的测试。
然而测试的构建,应该是在程序主体已经成形的情况下才能进行。如果程序属于创造性的设计,主体并未成形,过早的加入测试反而会大幅度的降低开发效率。所以当我给 Google 开发 Python 静态分析的时候,我几乎没有使用任何测试。虽然组里的成员催我写测试,但是我却知道那只会降低我的开发效率,因为这个程序在几个星期的过程中,被我推翻重来了好几次。要是我一开头就写上测试,这些测试就会碍手碍脚,阻碍我大幅度的修改代码。
测试的另一个副作用是,它让很多人对测试有一种盲目的依赖心理。改了程序之后,把测试跑一遍没出错,就以为自己的代码是正确的。可是测试其实并不能保证代码的正确,即使完全“覆盖”了也是一样。覆盖只是说你的代码被测试碰到过了,可是它在什么条件下碰到的却没法判断。如果实际的条件跟测试时的条件不同,那么实际运行中仍然会出问题。测试的条件往往是“组合爆炸”的数量级,所以你不可能测试所有的情况。唯一能可靠的方法是使用严密的“逻辑推理”,证明它的正确。