┌ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬┐
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ ┼ ┼ · ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ○ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ○ ○ ○ ● ┼ ┼ ┼ ┼┤
├ ┼ ┼ · ○ ○ ● ● ┼ ┼ ┼ · ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
└ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴┘
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ · ┼ ┼ ┼ ┼ ┼ ┼ ┼ · ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ○ ┼ ● ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ○ ○ ○ ● ┼ ┼ ┼ ┼┤
├ ┼ ┼ · ○ ○ ● ● ┼ ┼ ┼ · ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
├ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼┤
└ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴ ┴┘