qh[i_, \[Mu]_, \[Beta]_] := 1 - \[Mu]^(i^\[Beta] - (i - 1)^\[Beta]);
qh[0, \[Mu]_, \[Beta]_] := 0;
qh[1, \[Mu]_, \[Beta]_] := 1 - \[Mu];
q[1, \[Mu]_, \[Beta]_] := qh[1, \[Mu], \[Beta]];
q[i_, \[Mu]_, \[Beta]_] :=
qh[i, \[Mu], \[Beta]]/(1 -
Sum[qh[k, \[Mu], \[Beta]], {k, 0, i - 1}]);
p[i_, \[Mu]_, \[Beta]_] := (1 - qh[i, \[Mu], \[Beta]])/(1 -
Sum[qh[k, \[Mu], \[Beta]], {k, 0, i - 1}]);
上面是函数定义,已知i是1到10的整数,请问怎么求使函数q大于零小于一的另外两参数μ跟β的范围,谢谢
qh[0, \[Mu]_, \[Beta]_] := 0;
qh[1, \[Mu]_, \[Beta]_] := 1 - \[Mu];
q[1, \[Mu]_, \[Beta]_] := qh[1, \[Mu], \[Beta]];
q[i_, \[Mu]_, \[Beta]_] :=
qh[i, \[Mu], \[Beta]]/(1 -
Sum[qh[k, \[Mu], \[Beta]], {k, 0, i - 1}]);
p[i_, \[Mu]_, \[Beta]_] := (1 - qh[i, \[Mu], \[Beta]])/(1 -
Sum[qh[k, \[Mu], \[Beta]], {k, 0, i - 1}]);
上面是函数定义,已知i是1到10的整数,请问怎么求使函数q大于零小于一的另外两参数μ跟β的范围,谢谢