基于原根的定义及性质,可以定义Diffie-Hellman密钥交换算法.该算法描述如下:1,有两个全局公开的参数,一个素数q和一个整数a,a是q的一个原根.2,假设用户A和B希望交换一个密钥,用户A选择一个作为私有密钥的随机数XA(XA<q),并计算公开密钥YA=a^XA mod q。A对XA的值保密存放而使YA能被B公开获得。类似地,用户B选择一个私有的随机数XB<q,并计算公开密钥YB=a^XB mod q。B对XB的值保密存放而使YB能被A公开获得.3,用户A产生共享秘密密钥的计算方式是K = (YB)^XA mod q.同样,用户B产生共享秘密密钥的计算是K = (YA)^XB mod q.这两个计算产生相同的结果: K = (YB)^XA mod q = (a^XB mod q)^XA mod q = (a^XB)^XA mod q (根据取模运算规则得到) = a^(XBXA) mod q = (a^XA)^XB mod q = (a^XA mod q)^XB mod q = (YA)^XB mod q 因此相当于双方已经交换了一个相同的秘密密钥.4,因为XA和XB是保密的,一个敌对方可以利用的参数只有q,a,YA和YB.因而敌对方被迫取离散对数来确定密钥.例如,要获取用户B的秘密密钥,敌对方必须先计算 XB = inda,q(YB) 然后再使用用户B采用的同样方法计算其秘密密钥K. Diffie-Hellman密钥交换算法的安全性依赖于这样一个事实:虽然计算以一个素数为模的指数相对容易,但计算离散对数却很困难.对于大的素数,计算出离散对数几乎是不可能的. 下面给出例子.密钥交换基于素数q = 97和97的一个原根a = 5.A和B分别选择私有密钥XA = 36和XB = 58.每人计算其公开密钥 YA = 5^36 = 50 mod 97 YB = 5^58 = 44 mod 97 在他们相互获取了公开密钥之后,各自通过计算得到双方共享的秘密密钥如下: K = (YB)^XA mod 97 = 44^36 = 75 mod 97 K = (YA)^XB mod 97 = 50^58 = 75 mod 97 从|50,44|出发,攻击者要计算出75很不容易. [1] 协议编辑假设用户A希望与用户B建立一个连接,并用一个共享的秘密密钥加密在该连接上传输的报文.用户A产生一个一次性的私有密钥XA,并计算出公开密钥YA并将其发送给用户B.用户B产生一个私有密钥XB,计算出公开密钥YB并将它发送给用户A作为响应.必要的公开数值q和a都需要提前知道.另一种方法是用户A选择q和a的值,并将这些数值包含在第一个报文中. 下面再举一个使用Diffie-Hellman算法的例子.假设有一组用户(例如一个局域网上的所有用户),每个人都产生一个长期的私有密钥XA,并计算一个公开密钥YA.这些公开密钥数值,连同全局公开数值q和a都存储在某个中央目录中.在任何时刻,用户B都可以访问用户A 的公开数值,计算一个秘密密钥,并使用这个密钥发送一个加密报文给A.如果中央目录是可信任的,那么这种形式的通信就提供了保密性和一定程度的鉴别功能.因为只有A和B可以确定这个密钥,其它用户都无法解读报文(保密性).接收方A知道只有用户B才能使用此密钥生成这个报文(鉴别). Diffie-Hellman算法具有两个吸引力的特征: 仅当需要时才生成密钥,减小了将密钥存储很长一段时间而致使遭受攻击的机会. 除对全局参数的约定外,密钥交换不需要事先存在的基础结构.