在一个m*n的棋盘上,有k个格子里放有棋子。是否总能对所有棋子进行红蓝二染色,使得每行每列的红色棋子和蓝色棋子最多差一个?
答案:
可以。建一个二分图G(X,Y),其中X有m个顶点代表了棋盘的m个行,Y有n个顶点代表了棋盘的n个列。第i行第j列有棋子就在X(i)和Y(j)之间连一条边。先找出图G里的所有环(由于是二分图,环的长度一定是偶数),把环里的边红蓝交替染色。剩下的没染色的图一定是一些树。对每棵树递归地进行操作:去掉一个叶子节点和对应边,把剩下的树进行合法的红蓝二染色,再把刚才去掉的顶点和边加回去,给这个边适当的颜色以满足要求。
答案:
可以。建一个二分图G(X,Y),其中X有m个顶点代表了棋盘的m个行,Y有n个顶点代表了棋盘的n个列。第i行第j列有棋子就在X(i)和Y(j)之间连一条边。先找出图G里的所有环(由于是二分图,环的长度一定是偶数),把环里的边红蓝交替染色。剩下的没染色的图一定是一些树。对每棵树递归地进行操作:去掉一个叶子节点和对应边,把剩下的树进行合法的红蓝二染色,再把刚才去掉的顶点和边加回去,给这个边适当的颜色以满足要求。