陶瓷是由金属和非金属化合物构成的无机非金属材料。这是一种符合材料,它包含有一些金属成分,但不能因此就被定义为金属;该混合物的其余部分由互补的非金属材料组成,当这些非金属材料组合在一起时,就形成了一种性能与众不同的特殊材料——陶瓷。

陶瓷是工程材料中刚度最好、硬度最高的材料,但正因为过于坚硬,所以也给它带来了“脆”性。这跟金属是截然相反的。

要弄明白两者的区别,可以这么想象一下:金属材料就像是把一堆橡皮筋绑成一个球,球摸起来很结实,但是由于橡胶容易变形,所以按下去时还是挺有弹性的。这个比喻略显夸张,但很符合金属材料的特点,金属中键的类型使得原子可以在压力下运动,所以金属可以通过锤打而改变形状。
但是陶瓷就不一样了。打个比方来说,陶瓷就像是一个由互相连接的硬木棍做成的积木,这是一种更加坚固的结构,在受力时不会轻易变形。但正是因为足够“倔强”,不变形,它们会一直承受越来越大的力量,直到这股力量强到可以破坏掉连接的木棍,这样,整个结构就坍塌了,陶瓷的破碎就是这么来的。
用稍微科学一点的说法来解释,就是由于陶瓷材料中离子键和共价键的结合非常强大和稳定,这些键被牢牢地锁定在它们自己的位置上,外来的作用力很难把它们分开,因此陶瓷材料可以在巨大的压力下仍保持坚固。

但需要注意的是,陶瓷的“倔强”只有在应对压缩力的时候才会出现。在面对剪切、张力或高速冲击时,陶瓷的抵抗力就会严重下降。这其中的原因涉及到了一些材料学的知识,我尽量解释得简单易懂:陶瓷中,化学键的固有强度和晶体的形成在微观上使得材料产生了方向,这种颗粒(微晶体)的形状有点像乱堆在一起的石头,方向也是随机的。在微观层面上,这种堆叠将具有刚好彼此对齐的粒度边界,从而创建一个连续的粒度边界,其中可能发生聚合滑动。要让它们发生滑动需要很大的力量,但一旦真的滑动了,它们就会会远离互补的晶界,且无法找到一个新的位置,从而导致材料继续向外滑移并开始碎裂。一句话总结:越倔强,碎的时候就越痛。