网页资讯视频图片知道文库贴吧地图采购
进入贴吧全吧搜索

 
 
 
日一二三四五六
       
       
       
       
       
       

签到排名:今日本吧第个签到,

本吧因你更精彩,明天继续来努力!

本吧签到人数:0

一键签到
成为超级会员,使用一键签到
一键签到
本月漏签0次!
0
成为超级会员,赠送8张补签卡
如何使用?
点击日历上漏签日期,即可进行补签。
连续签到:天  累计签到:天
0
超级会员单次开通12个月以上,赠送连续签到卡3张
使用连续签到卡
05月30日漏签0天
高中数学吧 关注:322,326贴子:2,386,981
  • 看贴

  • 图片

  • 吧主推荐

  • 视频

  • 游戏

  • 2回复贴,共1页
<<返回高中数学吧
>0< 加载中...

离散数学及其应用 第六版 练习1.8 答案看不懂。。大佬求解

  • 只看楼主
  • 收藏

  • 回复
  • xunni
  • 迹(7),
    7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

离散数学及其应用 第六版 练习1.8
We will use a coloring of the 10 × 10 board with four colors as the basis for a proof by contradiction showing that no such tiling exists. Assume that 25 straight tetrominoes can cover the board. Some will be placed horizontally and some vertically. Because there is an odd number of tiles, the number placed horizontally and the number placed vertically cannot both be odd, so assume without loss of generality that an even number of tiles are placed horizontally. Color the squares in order using the colors red, blue, green, yellow in that order repeatedly, starting in the upper left corner and proceeding row by row, from left to right in each row. Then it is clear that every horizontally placed tile covers one square of each color and each vertically placed tile covers either zero or two squares of each color. It follows that in this tiling an even number of squares of each color are covered. But this contradicts the fact that there are 25 squares of each color. Therefore no such coloring exists.
each vertically placed tile covers either zero or two squares of each color.这句话啥意思?


  • 诺言,
  • 吆
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
你手机可以ROOT 看私信


2025-05-30 10:57:17
广告
  • 诺言,
  • 吆
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
+q499175015


登录百度账号

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!
  • 贴吧页面意见反馈
  • 违规贴吧举报反馈通道
  • 贴吧违规信息处理公示
  • 2回复贴,共1页
<<返回高中数学吧
分享到:
©2025 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示