芯片的设计通常需要花费一两年甚至三五年时间,并且机器学习(ML)算法的发展速度非常快,这么长的芯片设计周期难以满足算法更新的需求。
Google的解决方案是——让AI设计AI芯片。神经网络可以学习并设计一些需要耗费大量时间的部分,这个工作被称作“布局”。在对芯片设计进行了足够长时间的学习之后,它可以在不到24小时的时间内为Google Tensor处理单元完成设计,在功耗、性能、面积(PPA)都超过了人类专家数周的设计成果。
除了谷歌,前也报道两大EDA巨头也开始在其芯片设计工具中加入AI。
总的来说,两大EDA公司加入AI的芯片设计工具可以缩短芯片的设计时间高达10倍,芯片PPA提升20%。
Google的解决方案是——让AI设计AI芯片。神经网络可以学习并设计一些需要耗费大量时间的部分,这个工作被称作“布局”。在对芯片设计进行了足够长时间的学习之后,它可以在不到24小时的时间内为Google Tensor处理单元完成设计,在功耗、性能、面积(PPA)都超过了人类专家数周的设计成果。
除了谷歌,前也报道两大EDA巨头也开始在其芯片设计工具中加入AI。
总的来说,两大EDA公司加入AI的芯片设计工具可以缩短芯片的设计时间高达10倍,芯片PPA提升20%。