\sum x_i^2=\frac{1}{n-1} \sum_{i\ne j}^{}\left ( \sum x_i^2 \right ) =\sum_{i\ne j}^{}p_i
\sum_{i< j}^{} x_ix_j=\sum_{i< j,i,j\ne k}^{} \frac{x_ix_j}{n-2} =\sum_{k=1}^{n} \frac{q_i}{n-2}
第一个不等号两边平方后
证明:\frac{(n+1)(n-2)}{n-1}\left ( p_i+p_j \right ) +\frac{\left( (n-1)(n-2) +\frac{2}{n-1}\right)}{n-2} \left ( q_i+q_j \right )\ge2\sqrt{\left ( p_i+q_i \right ) \left ( p_j+q_j \right )}
成立