猛兽吧 关注:95,229贴子:2,819,979

转载 老虎狮子 前肢生理学对比

只看楼主收藏回复

个人认为这篇文章分析得非常不错:
狮子主要优势:
1)更长的肩胛骨,(意味更多的肌肉附着空间)
2)更强壮的肱骨:同样肱骨长度情况下,中间部位AP(正向)和ML(侧向)直径更宽
更宽的末端,更厚的骨密质。
3)更强壮的桡骨(ML向),更长的桡骨。
老虎的主要优势:
1)更强的桡骨(AP向)。
2)更强的尺骨(AP向)
3)更强的前臂控制力矩。(鹰嘴长度和尺骨长度比)
4)更大的掌部。
简单结论:
狮子在挥掌方面有很大优势。
老虎在控制猎物,正向发力(推抓)方面有很大优势。
Pathera Leo vs Pathera Tigris
Credit to founder of initial study goes to Leofwin.
The following is a compilation of the best available data on the forelimb morphologies of the two animals. Data is the standard by which any claim ought to be judged, as it is with the following and the relative strengths of the lion and the tiger.
I. SCAPULAR SIZE:
Study: Christiansen and Adolfssen, 2007.
Metric: Scapular length.
Correlated With: Space for muscle attachment in the shoulders.
Sample Size: 17 lions, 15 tigers.
Lion: 210.2-288.4 mm.
Tiger: 199.1-241.3 mm.
Edge: Lion.
II. HUMERAL ROBUSTICITY BASED ON CIRCUMFERENCE:
Study: Christiansen and Adolfssen, 2007.
Metric: Least circumference of humeral diaphysis in relation to humeral length.
Correlated With: Overall resistance of humerus to stress.
Sample Size: 17 lions, 15 tigers.
Lion: 0.318.
Tiger: 0.303.
Edge: Lion.
Study: Christiansen and Harris, 2005.
Metric: Least circumference of humeral diaphysis in relation to humeral length.
Correlated With: Overall bending strength of humerus.
Sample Size: 3 lions, 5 tigers.
Lion: 0.314.
Tiger: 0.300.
Edge: Lion.
III. HUMERAL ROBUSTICITY BASED ON ML DIAMETER:
Study: Christiansen and Harris, 2005.
Metric: ML diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the ML axis.
Sample Size: 3 lions, 5 tigers.
Lion: 0.0897.
Tiger: 0.0870.
Edge: Lion.
Study: Bertram and Biewner, 1990.
Metric: ML diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the ML axis.
Sample Size: 4 lions, 2 tigers.
Lion: 0.0892.
Tiger: 0.0857.
Edge: Lion.
Study: Meachen-Samuels and Van Valkenburgh, 2010.
Metric: ML diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the ML axis.
Sample Size: 2 lions, 2 tigers.
Lion: 0.0824.
Tiger: 0.0909.
Edge: Tiger.
IV. HUMERAL ROBUSTICITY BASED ON AP DIAMETER:
Study: Christiansen and Harris, 2005.
Metric: AP diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the AP axis.
Sample Size: 3 lions, 5 tigers.
Lion: 0.1098.
Tiger: 0.1037.
Edge: Lion.
Study: Bertram and Biewner, 1990.
Metric: AP diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the AP axis.
Sample Size: 4 lions, 2 tigers.
Lion: 0.1278.
Tiger: 0.1137.
Edge: Lion.
Study: Meachen-Samuels and Van Valkenburgh, 2010.
Metric: AP diameter of humerus at midshaft in relation to humeral length.
Correlated With: Resistance of humerus to stresses along the AP axis.
Sample Size: 2 lions, 2 tigers.
Lion: 0.1144.
Tiger: 0.1096.
Edge: Lion.
V. ML CORTICAL THICKNESS:
Study: Meachen-Samuels and Van Valkenburgh, 2010.
Metric: ML k-value.
Correlated With: Resistance of humerus to stresses along the ML axis (inverse correlation).
Sample Size: 2 lions, 2 tigers.
Lion: 0.489.
Tiger: 0.561.
Edge: Lion.
VI. AP CORTICAL THICKNESS:
Study: Meachen-Samuels and Van Valkenburgh, 2010.
Metric: AP k-value.
Correlated With: Resistance of humerus to stresses along the AP axis (inverse correlation).
Sample Size: 2 lions, 2 tigers.
Lion: 0.571.
Tiger: 0.610.
Edge: Lion.
VII. DISTAL BENDING STRENGTH OF HUMERUS:
Study: Christiansen and Harris, 2005.
Metric: Distal articular width of humerus in relation to humeral length.
Correlated With: Resistance of humerus to stresses at the elbow joint.
Sample Size: 3 lions, 5 tigers.
Lion: 0.1923.
Tiger: 0.1827.
Edge: Lion.
VIII. ROBUSTICITY OF RADIUS BASED ON ML DIAMETER:
Study: Bertram and Biewner, 1990.
Metric: ML diameter of radius at midshaft in relation to radial length.
Correlated With: Resistance of radius to stresses along the ML axis.
Sample Size: 4 lions, 2 tigers.
Lion: 0.0990.
Tiger: 0.0890.
Edge: Lion.
IX. ROBUSTICITY OF RADIUS BASED ON AP DIAMETER:
Study: Bertram and Biewner, 1990.
Metric: AP diameter of radius in relation to radial length.
Correlated With: Resistance of radius to stresses along the AP axis.
Sample Size: 4 lions, 2 tigers.
Lion: 0.0630.
Tiger: 0.0739.
Edge: Tiger.
X. ROBUSTICITY OF ULNA BASED ON AP DIAMETER:
Study: Christiansen and Adolfssen, 2007.
Metric: AP diameter of ulna at midshaft in relation to ulnar length.
Correlated With: Resistance of ulna to stresses along the AP axis.
Sample Size: 17 lions, 15 tigers.
Lion: 0.086.
Tiger: 0.098.
Edge: Tiger.
Study: Christiansen and Harris, 2005.
Metric: AP diameter of ulna at midshaft in relation to ulnar length.
Correlated With: Resistance of ulna to stresses along the AP axis.
Sample Size: 3 lions, 5 tigers.
Lion: 0.0736.
Tiger: 0.0830.
Edge: Tiger.
XI. OLECRANON LEVERAGE:
Study: Christiansen and Harris, 2005.
Metric: Olecranon length in relation to ulnar length.
Correlated With: Leverage of triceps muscle in extending the forearm.
Sample Size: 3 lions, 5 tigers.
Lion: 0.1852.
Tiger: 0.2081.
Edge: Tiger.
Study: Sorkin, 2006.
Metric: Olecranon length in relation to ulnar length.
Correlated With: Leverage of triceps muscle in extending the forearm.
Sample Size: 2 lions, 2 tigers.
Lion: 0.1986.
Tiger: 0.2575.
Edge: Tiger.
XII. GRIP:
Study: Iwaniuk, 1997.
Metric: MCP ratio.
Correlated With: Size of paw, strength of grip (inverse correlation).
Sample Size: 6 lions, 4 tigers.
Lion: 2.329.
Tiger: 2.072.
Edge: Tiger.
CONCLUSIONS:
The best data we have indicates that the lion has the following advantages over the tiger on average:
1. More space for shoulder muscle attachments.
2. Greater ML (2/3 studies) and AP (3/3 studies) diameter of humerus at equal humeral lengths.
3. Greater cortical thickness in the humerus at equal humeral widths.
4. Greater distal width of humerus at equal humeral lengths.
5. Greater ML diameter of radius at equal radial lengths.
The lion is slightly taller than the tiger, but the tiger's humerus makes up slightly more of its forelimb length than the lion. The result is that--despite the tiger's size advantage--the lion will have a humerus of approximately equal length to that of the tiger. Thus, the advantages of greater ML diameter of humerus, greater AP diameter of humerus, and greater distal width of humerus are all advantages in absolute terms, not merely on a pound for pound basis. These, combined with the lower k-values of the lion and the greater ML diameter of the radius, indicate that the resistance of the lion's forelimb bones to stresses along the ML axis will be somewhat greater on average than the resistance of the tiger's forelimb bones to the same stresses.
This indicates that there is some pressure for increased resistance to stress in the forelimb on the lion that is absent--or at least reduced in intensity--to the tiger. Whatever this pressure may be, if the bones need to be stronger to meet the demand, so will the musculature. For instance, if running is the factor requiring resistance to stress from the lion's bones, it will also require tremendous muscle force production for the purpose of attaining and maintaining high speeds. Now, running would place stress only along the AP axis, and thus is unlikely to be the factor we're looking for, but it illustrates the point quite nicely. Whatever produces a pressure for increased bone bending strength along a certain axis will also produce a pressure for increased torque production from the muscles powering the motions of the bone along the same axis.
The conclusion to be drawn from the best data we have, then, would be that the lion will tend to have greater strength than the tiger when moving the forelimb through the ML axis.
The best data we have also indicates that the tiger will have the following advantages over the lion on average:
1. Increased AP robusticity in the bones of the forearm.
2. Better leverage when extending the forearm.
3. Better grip.
Despite the lion's longer radius and ulna, the raw data (prior to calculating robusticities) shows that the AP diameter of the tiger's radius and ulna are greater than those of the lion in absolute terms. This indicates that the tiger's forearm bones, on average, will have greater resistance to stresses along the AP axis than the lion's. Therefore, as stated above, there is some pressure for increased bending strength along the AP axis placed on the tiger's forearm bones that is absent or reduced on the lion, and thus also a pressure for increased strength in the muscles powering the motions of the forearm along the AP axis. This, combined with the tiger's greater leverage when extending the forearm, would appear to indicate that the tiger will have greater strength in motions like pushing and pulling.
The conclusion to be drawn from the best data we have, then, would be that the tiger will tend to have greater strength than the lion in terms of motions of the forearm through the AP axis (eg, pushing and pulling), as well as in terms of strength of grip.


IP属地:上海1楼2020-04-17 20:34回复
    老虎是摔跤手,狮子是打击系选手


    IP属地:河北来自手机贴吧2楼2020-04-17 23:19
    收起回复
      2025-06-07 07:20:23
      广告
      感觉老虎是拳击手,狮子是摔跤手


      IP属地:俄罗斯来自Android客户端3楼2020-04-17 23:26
      回复
        我看t先生那招,忘记叫什么招了,反正就是几秒撂倒哪个,挺强的


        IP属地:海南来自Android客户端4楼2020-04-17 23:38
        回复
          桡骨粗度,老虎AP大,狮子ML大,这是值得注意的
          这也是从侧面看老虎前臂显粗的原因


          IP属地:山东5楼2020-04-18 23:05
          收起回复
            其实老虎无论击打还是摔跤都非常出色,就在于前肢力量!


            IP属地:安徽来自Android客户端6楼2020-04-18 23:21
            收起回复
              各自的发展出的特点完全可以合理的解释:
              狮子下臂长, 奔跑时对肱骨产生的力矩更大,需要更粗的肱骨做支撑.同样的对肩胛骨的要求也更高.
              同时桡骨不仅绝对长度大,按比值的ML向粗壮度还高. 这优势可谓很明显.
              老虎AP向尺骨和桡骨粗壮度却高出一大截,配合更高一筹的鹰嘴,这方面优势很大.
              其对应的一些更具体的行为特性:
              老虎臂短重心低,配合其更强的推抓能力:往上攀爬(比如爬树) ,以及往下跳跃(比如从树上跳下,考验前肢AP的承受能力) 肯定更强,其跳跃扑杀我觉得也更得心应手.
              更值得指出的是, 其更强的前臂控制力 和其 更长的犬牙 是完全配套使用的. 更长的犬牙=>更低的抗扭断能力=>需要更强的猎物控制能力.
              这二者最后发展出的特点完全是长期进化以适应各自环境体现:
              假使老虎前臂特点和狮子一样,犬齿估计捕个野猪都有可能弄断.
              假使狮子前臂和老虎一样,其他条件不变,其奔跑能力就要大打折扣了, 更重要的,肩高低上5公分,很多鬃毛
              发达的狮子 估计奔跑时就有大几率踩到自己鬃毛,草原上就会多出很多雄狮打滚的奇特景象了.
              其实还可以引出一些推断:
              奔跑能力和前臂控制力不可皆得. 导致刃齿虎等犬齿特长的物种,无法进化出奔跑与控制力的同步优势 . 最终
              只能走向灭亡


              IP属地:上海7楼2020-04-19 10:56
              收起回复
                我不知道作者是有意还是无意的,只选取部分数字,干扰人的判断。比如第一条,肩胛骨大小,我印象里狮子和老虎肩胛骨大小差不多,没有本质区别。
                作者说
                Study: Christiansen and Adolfssen, 2007.
                Metric: Scapular length.
                Correlated With: Space for muscle attachment in the shoulders.
                Sample Size: 17 lions, 15 tigers.
                Lion: 210.2-288.4 mm.
                Tiger: 199.1-241.3 mm.
                我打开Christiansen and Adolfssen, 2007.原话是这样的。


                雌雄一共17只狮子,雌175.7-242.1 雄210.2-288.4
                雌雄一共15只孟加拉虎,雌190.7-241.7 雄199.1-241.3
                还有3只雄东北虎,270.5-284.8
                所有这几个狮子老虎都算上,就是17只狮子175.7-288.4, 18只老虎 190.7-284.8


                IP属地:天津8楼2020-04-19 11:55
                收起回复
                  2025-06-07 07:14:23
                  广告
                  不用花时间去研读,直觉告诉我这里有片面解读的存在、结论未必是原文作者要明确表达的意思。


                  IP属地:北京来自Android客户端9楼2020-04-20 08:33
                  收起回复
                    狮虎在各方面的力量都是半斤八两,感觉没有显著差异,
                    从很多狮虎斗视频看,老虎更柔韧灵活,狮子防御更好(鬃毛可以让对方咬一嘴毛从而保护其头颈要害),因此狮子正面硬刚略占优势,老虎则需多“打游击”


                    IP属地:辽宁来自Android客户端11楼2020-04-21 09:05
                    收起回复
                      数据是这样,直观感受就是老虎在控制猎物中真的很优秀,但是对环境掩藏近身偷袭的依赖性很大。狮子是平衡了短途奔跑和贴身搏斗,更加适应广阔的大场地狩猎。这些区别用来斗兽是真的没意义,打架厉害的不见得捕猎成功率及生存能力就会比对方厉害。这也是狮子征服草原,老虎留守山林的区别所在,要我看讨论一下两个物种对猎物的占有量才是真正的比拼。


                      IP属地:云南来自Android客户端12楼2020-04-21 09:53
                      收起回复
                        总结一下来说的话
                        更长的肩胛骨,(意味更多的肌肉附着空间)
                        这个特征老虎和狮子互在变异范围内。而且比长度对肌肉影响更大的肩胛宽度他没列举(按比例来说肩胛宽度是熊科》猫科》犬科,见图,犬熊,棕熊,狮子和狼的肩胛对比)。

                        同样肱骨长度情况下,中间部位AP(正向)和ML(侧向)直径更宽
                        这是一个和胳膊承重关系更大的测量。一般是用来推算体重的。
                        更宽的末端
                        这个列的数字不是总的宽度。总的宽度应该是20%以上了,这个还不到20%,很可能是关节面的宽度,关节面宽度还是一个和估重关系更大的指标。总的宽度是这样:The distal end of the humerus is very wide. The
                        distal width of the humerus relative to the articular
                        length in Megantereon (0.282; Fig. 15B) is significantly
                        higher than in Panthera leo (0.264 ± 0.014;
                        P < 0.001), P. pardus (0.236 ± 0.012; P < 0.001),
                        P. tigris (0.266 ± 0.013; P < 0.001) and Puma concolor
                        (0.238 ± 0.023; P = 0.006), but is not significantly different
                        from Panthera onca (0.273 ± 0.017; P = 0.197),
                        Neofelis nebulosa (0.267 ± 0.030; P = 0.343) or Smilodon
                        gracilis (0.270 ± 0.018; P = 0.283). Distal humeral
                        width is proportionally greater in S. fatalis (0.307 ±
                        0.009; P < 0.001) and S. populator (0.332 ± 0.012;
                        P = 0.003) than in Megantereon.
                        更厚的骨密质
                        这是对原论文的误读,原论文没有这结论,甚至给出的计算方法也不是这么算的。
                        更强壮的桡骨(ML向)
                        这是一个追逐型猎手区别于伏击型猎手的特征,狼的桡骨ML向比狮子还发达。配个图吧,犬熊,棕熊,狮子,狼的对比

                        更长的桡骨
                        这个是典型的追逐型猎手特征,或者说开放生境猎手特征,很多文章都有论述
                        1)更强的桡骨(AP向)。
                        2)更强的尺骨(AP向)
                        前面说过了,这个是追逐型和埋伏型的区别。
                        鹰嘴长度和尺骨长度比
                        这个就是说过很多次的,肱三头肌的动力臂和阻力臂
                        结论是他列举的大部分指标只能说明狮子是比老虎更偏于开放型生境,更偏于追逐的猎手,而老虎更偏于封闭生境,伏击猎手。还有一部分指标可以说明狮子平均体重可能略大于老虎。跟肌肉力量什么的关系不大


                        IP属地:天津13楼2020-04-21 12:29
                        收起回复
                          鬃毛到底能不能防御锁喉,或者说保护狮子的脖子不受伤害


                          IP属地:上海来自Android客户端14楼2020-04-21 12:40
                          收起回复
                            有吧友质疑其中数据 原论文中没有, 文章中一共引用了8篇论文的数据,所以看清楚了再说,如果对数据有疑问完全可以根据作者信息去搜索下载。我本人并没有一篇篇去看过,毕竟自己工作也比较忙。
                            PS:论文里样本数据确实不多,如果还需要包含体重,年龄之类信息显然太过苛刻。
                            研究一头狮虎从生到死,再解剖研究四肢结构,还需要足够样本显然太难!
                            但显然如果有些参数区分度很大,是足够下定性结论的。 原文章作者应该是尽可能搜集到了
                            所有相关论文(毕竟做这些研究的人不多,文章也很少),欢迎各位 去补充 去扩展数据库。
                            仅针对肱骨密质骨厚度(表中还有各方向承受能力的估算):
                            肉眼算了下 ML向密质骨厚度: 两头狮子 12.57mm~15.43mm ;AP向 :16.1mm~16.9mm ;
                            对应肱骨长:307mm~358mm
                            两头老虎: ML向厚度:11.54mm~12.71mm; AP向:12.39mm~13.82mm
                            对应肱长:290.87mm~325.81mm
                            如果根据目前所有论文中能统计的数据,做一下计算,判断一下肱骨整体强度的话,二者区别度应该会很明显


                            IP属地:上海15楼2020-04-21 18:11
                            收起回复
                              2025-06-07 07:08:23
                              广告
                              为什么说K不能代表动物的骨骼粗壮程度,而原论文给的IX和IY取对数后除以骨头长度的对数可以呢?因为K表示的动物粗壮程度,和我们一般认为的有明显矛盾。
                              比如猎豹和山狮的对比,分别计算了一下:
                              两个猎豹ML向的K分别是0.5588 和0.6247
                              三个山狮ML向的K分别是0.7406 和 0.7005 和 0.6774
                              两个猎豹CC向的K分别是0.6057 和0.6764
                              三个山狮CC向的K分别是0.6723 和 0.7697 和 0.7072
                              可以看出来猎豹两个方向的K都明显比山狮低,按K值的话,就是猎豹骨骼粗壮程度超过山狮。这显然与常识不符合


                              可是按照原文表格的IX和IY计算的话,数字29是山狮,数字1是猎豹,可以看出来猎豹低于那条直线而山狮高于,也就是山狮比猎豹骨骼粗壮,比较符合常识


                              IP属地:天津16楼2020-04-22 08:32
                              收起回复