求使得 f[x1_] 与 f[x3_] 相等的 α 的表达式
In[6]:= x1=(v+c)/2
Out[6]= (c+v)/2
In[7]:= f[x1_]=(n(x1-c)(v-x1))/v
Out[7]= (n (1/2 (-c-v)+v) (-c+(c+v)/2))/v
In[8]:= Simplify[(n (1/2 (-c-v)+v) (-c+(c+v)/2))/v]
Out[8]= (n (c-v)^2)/(4 v)
In[9]:= x3=(v+c+\[Alpha]\[Theta](1-k)(p+c))/2[1+\[Alpha]\[Theta](1-k)]
Out[9]= (c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]]
In[10]:= f[x3_]=(n (x3-c)[(v-x3)+\[Alpha]\[Theta](1-k)(p-x3)])/v
Out[10]= (n (-c+(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]])[v+(1-k) \[Alpha]\[Theta] (p-(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]])-(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]]])/v

In[6]:= x1=(v+c)/2
Out[6]= (c+v)/2
In[7]:= f[x1_]=(n(x1-c)(v-x1))/v
Out[7]= (n (1/2 (-c-v)+v) (-c+(c+v)/2))/v
In[8]:= Simplify[(n (1/2 (-c-v)+v) (-c+(c+v)/2))/v]
Out[8]= (n (c-v)^2)/(4 v)
In[9]:= x3=(v+c+\[Alpha]\[Theta](1-k)(p+c))/2[1+\[Alpha]\[Theta](1-k)]
Out[9]= (c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]]
In[10]:= f[x3_]=(n (x3-c)[(v-x3)+\[Alpha]\[Theta](1-k)(p-x3)])/v
Out[10]= (n (-c+(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]])[v+(1-k) \[Alpha]\[Theta] (p-(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]])-(c+v+(1-k) (c+p) \[Alpha]\[Theta])/2[1+(1-k) \[Alpha]\[Theta]]])/v
