Introduction
The basic structure of HIV is similar to that of other viruses (Figure 1). HIV has a core of genetic material surrounded by a protective sheath, called a capsid. The genetic material in the core is RNA (ribonucleic acid), which contains the information that the virus needs in order to replicate (make more copies of itself) and perform other functions. You can think of RNA as the set of rules the virus follows in order to live.
In HIV, viral RNA has a protein called "reverse transcriptase" that is crucial for viral replication inside T cells, white blood cells that help coordinate activities of the immune system. (The function of reverse transcriptase, which means "writing backwards," will be explained later when we discuss how HIV infects T cells.)
HIV, like all other viruses, has proteins that are particular to itself. These proteins are called antigens. Antigens have diverse functions in viral replication. In the case of HIV, a combination of two antigens, gp120 and gp41, allow the virus to hook onto T cells and infect them. These antigens are located on the surface of the virus. (Another HIV antigen is p24, an antigen of the core of the virus that is measured to estimate the amount of active free-floating virus in the blood of HIV positive people).
The basic structure of HIV is similar to that of other viruses (Figure 1). HIV has a core of genetic material surrounded by a protective sheath, called a capsid. The genetic material in the core is RNA (ribonucleic acid), which contains the information that the virus needs in order to replicate (make more copies of itself) and perform other functions. You can think of RNA as the set of rules the virus follows in order to live.
In HIV, viral RNA has a protein called "reverse transcriptase" that is crucial for viral replication inside T cells, white blood cells that help coordinate activities of the immune system. (The function of reverse transcriptase, which means "writing backwards," will be explained later when we discuss how HIV infects T cells.)
HIV, like all other viruses, has proteins that are particular to itself. These proteins are called antigens. Antigens have diverse functions in viral replication. In the case of HIV, a combination of two antigens, gp120 and gp41, allow the virus to hook onto T cells and infect them. These antigens are located on the surface of the virus. (Another HIV antigen is p24, an antigen of the core of the virus that is measured to estimate the amount of active free-floating virus in the blood of HIV positive people).