捷程同程学堂今日分享
捷程同程学堂今日分享:
三角变换与三角函数的性质问题
1.?解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解
2.?构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性
解三角形问题
1.?解题路线图
(1)?①化简变形;②用余弦定理转化为边的关系;③变形证明
(2)?①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围
2.?构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化
③求结果
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形
数列的通项、求和问题
1.?解题路线图
①先求某一项,或者找到数列的关系式
②求通项公式
③求数列和通式
2.?构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)
④写步骤:规范写出求和步骤
⑤再反思:反思回顾,查看关键点、易错点及解题规范
今天就和大家就分享到这,祝愿各位愉快!
更多学习方法以及学习技巧请关注“同程学堂教育平台”公众号
捷程同程学堂一对一辅导优势:
1、贴心辅导,准确高效;
2、专业的教师团队;
3、专业的教学计划;
4、高效的教学模式;
5、全方位跟踪回访;
更多学习方法以及学习技巧请关注捷程同程学堂
来电或到校区咨询,告知前台老师通过宣传单、网络渠道了解到捷程同程学堂,可享受以下增值服务:
1、免费领取新学期学习资料(全年级各科知识点、基础知识梳理、中高考高频词汇、期中期末复习重点以及各科思维导图)
2、免费学科测评一次;
3、免费自习室使用权(30天),享受全天陪读服务;
4、免费参与线上线下的家长课堂(各年级家庭教育、考试政策类讲座);
日照东港区烟台路荣成路交汇华润万象汇北沿街150-153号
0633-8787225/8787221
29家校区供您就近选择:
潍坊区域(盈隆、高新、广文、九龙山、银座VIP、潍城、坊子、青州、寿光、诸城、昌邑、昌乐、高密、安丘、临朐)、日照、滨州(邹平)、东营(广饶)、烟台(莱州、莱阳、招远)、威海(文登、荣成)、淄博(桓台)、济宁(曲阜)、泰安(肥城)、烟台(龙口)校区全国免费咨询热线:400-853-0999