不作辅助线的高中解三角方程的方法(当然了不合题意)
设∠DCE=θ,则∠AEC=90°-θ,∠D=90°-2θ,∠ACE=180°-4θ,
∠DAC=5θ-90°.
在△ACE中,由正弦定理得
x/sin(5θ-90°)=(x+3)/sin(90°-θ)
→xcosθ=-(x+3)cos5θ
→x(cosθ+cos5θ)=-3cos5θ
→2xcos3θcos2θ=-3cos5θ ①
又∠ACB=5θ-90°+90°-2θ=3θ.
在等腰△ABC中易得
(x+3)cos3θ=✓14/2 ②
将x带入①得
[(✓14/2)/cos3θ-3]*2cos3θcos2θ
=-3cos5θ
=-3cos3θcos2θ+3sin2θsin3θ
→✓14cos2θ=3cos3θcos2θ+3sin2θsin3θ
→✓14cos2θ=3cosθ=✓14*(2cos²θ-1)
→2✓14cos²θ-3cosθ-✓14=0
→(2✓2cosθ-✓7)(✓7cosθ+✓2)=0
又cosθ>0 ∴cosθ=✓7/(2✓2)=✓14/4
则cos3θ=-3cosθ+4cos³θ=✓14/8
带入②得x=1 ,即CE=1
![](http://tiebapic.baidu.com/forum/w%3D580/sign=841f578bd4cec3fd8b3ea77de688d4b6/d3255982b2b7d0a231f9aedadcef76094b369a52.jpg?tbpicau=2025-02-19-05_4a39c2fdb57679308849ae317225d29b)