参赛地址:https://www.biendata.xyz/competition/ccks_2021_ckbqa/leaderboard/
本任务属于中文知识图谱自然语言问答任务,简称CKBQA (Chinese Knowledge Base Question Answering)。即输入一句中文问题,问答系统从给定知识库中选择若干实体或属性值作为该问题的答案。问题均为客观事实型,不包含主观因素。理解并回答问题的过程中可能需要进行实体识别、关系抽取、语义解析等子任务。这些任务的训练可以使用额外的资源,但是最终的答案必须来自给定的知识库。
知识图谱问答在当前互联网信息爆炸、人工智能盛行的时代是十分有战略价值和研究意义的。一方面,传统搜索引擎是以网页资源为核心,依据关键词索引、文本匹配等方式进行检索并返回给用户相关网页链接,而用户很多时候需要的只是对一个具体问题的特定解答。另一方面,诸如智能音箱、智能问诊等新一代产品应用通常也需要依赖于特定的知识图谱响应用户的自然语言请求。例如智能问诊应用可以依据医药健康领域的知识库对患者的情况进行初步诊断。
本次知识图谱问答任务是在CCKS上举办的第四届。今年在OpenKG基础上引入生活服务领域知识库及问答数据。同时依然保留去年开放领域的问答数据以供参赛队伍对模型进行训练。我们期望参赛选手的问答系统既能处理各种百科类的浅层问题,也能处理具备一定领域知识。
本评测任务所使用的生活服务领域知识图谱来源于美团。其中包括旅游、酒店、美食等多种领域的数据。我们将这些数据集整合到一起,同开放领域知识库PKUBASE一起作为问答任务的依据。
本任务属于中文知识图谱自然语言问答任务,简称CKBQA (Chinese Knowledge Base Question Answering)。即输入一句中文问题,问答系统从给定知识库中选择若干实体或属性值作为该问题的答案。问题均为客观事实型,不包含主观因素。理解并回答问题的过程中可能需要进行实体识别、关系抽取、语义解析等子任务。这些任务的训练可以使用额外的资源,但是最终的答案必须来自给定的知识库。
知识图谱问答在当前互联网信息爆炸、人工智能盛行的时代是十分有战略价值和研究意义的。一方面,传统搜索引擎是以网页资源为核心,依据关键词索引、文本匹配等方式进行检索并返回给用户相关网页链接,而用户很多时候需要的只是对一个具体问题的特定解答。另一方面,诸如智能音箱、智能问诊等新一代产品应用通常也需要依赖于特定的知识图谱响应用户的自然语言请求。例如智能问诊应用可以依据医药健康领域的知识库对患者的情况进行初步诊断。
本次知识图谱问答任务是在CCKS上举办的第四届。今年在OpenKG基础上引入生活服务领域知识库及问答数据。同时依然保留去年开放领域的问答数据以供参赛队伍对模型进行训练。我们期望参赛选手的问答系统既能处理各种百科类的浅层问题,也能处理具备一定领域知识。
本评测任务所使用的生活服务领域知识图谱来源于美团。其中包括旅游、酒店、美食等多种领域的数据。我们将这些数据集整合到一起,同开放领域知识库PKUBASE一起作为问答任务的依据。