红外光学材料是指站在红外成像与制导技术中用于制造透镜,棱镜,窗口片,滤光片,整流罩等的一类材料。这些材料具备满足需要的物理及化学性质,即主要指标为:良好的红外透明性与较宽的投射波段。一般来说,红外光学材料的透过波段和透过率与材料内部结构,特别是能级结构及化学键有密切关系。例如,对于晶体材料,其短波吸收限,主要取决于禁带宽度,而长波限取决于声子吸收即晶格振动吸收。而晶格振动的频率T与吸收长波限有关,即振动频率T越低,长波限值越大。对于金刚石结构的晶体材料,在红外波段内有较强的一次晶格振动谐波,面临次谐波吸收较弱,因此金刚石结构晶体有较好的透过率及较宽的频段特性。
对于晶体材料,若不考虑杂志与缺陷(气孔等),从理论上讲,大多数单晶体材料与多晶体材料红外透明性能几乎一致。因而多晶体制备技术,特别是多晶体热压,PVD,CVD制备技术得到了长足发展。由于多晶体性能与单晶体一致,不存在解里面,其机械强度,抗热冲击,经济性等由于单晶,可以做到很大尺寸等,在一些领域已取代了单晶材料。
对于玻璃及塑料,其投射波段及透过率与原子及分子结构有关,但由于其结构的长程无序,它的短波及长波的吸收限与禁带宽度及声子吸收的对应关系较为模糊。玻璃与塑料的应用与研究是近年来活跃的领域。

对于晶体材料,若不考虑杂志与缺陷(气孔等),从理论上讲,大多数单晶体材料与多晶体材料红外透明性能几乎一致。因而多晶体制备技术,特别是多晶体热压,PVD,CVD制备技术得到了长足发展。由于多晶体性能与单晶体一致,不存在解里面,其机械强度,抗热冲击,经济性等由于单晶,可以做到很大尺寸等,在一些领域已取代了单晶材料。
对于玻璃及塑料,其投射波段及透过率与原子及分子结构有关,但由于其结构的长程无序,它的短波及长波的吸收限与禁带宽度及声子吸收的对应关系较为模糊。玻璃与塑料的应用与研究是近年来活跃的领域。
