以偶数的某类集合Nₓ为例,Nₓ={x|x=62+30(T-1)(T≥1)}中的任一x,令pₙ为√x内最大素数,在[7,x-7]内的所有均等和于x的奇数对量记为y,y的组成中的素数量、素数对量、合数量、合数对量依次分别记为n、r、h、c,则总满足有2r=n-h+2c,2y=n+h;
取r(x)=y-h+c=y-H+e=y+∑-qpᵢ(i由1到n,pᵢ由7到pₙ),其中y=(x-12)/20;
又
-qpᵢ=(uᵢₜ+pᵢ²-6pᵢ-x)/6pᵢ+eᵢ₁+dᵢ(tₓᵢₜ-1)(dₓᵢₜ简记为dᵢ),
则∑-qpᵢ=∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-n-∑dᵢ-∑x/6pᵢ,
又x=xᵢₜ+30pᵢ(tₓᵢₜ-1)=xᵢ₁+30(tᵤᵢₜ-1)+30pᵢ(tₓᵢₜ-1)=pᵢ²+uᵢ₁+30(tᵤᵢₜ-1)+30pᵢ(tₓᵢₜ-1),
则∑-x/6pᵢ=-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ+∑5n'ₓᵢₜ,
则有
r(x)=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-0.6-n-∑dᵢ-∑x/6pᵢ
=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-0.6-n-∑dᵢ-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ+∑5n'ₓᵢₜ
=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ-0.6-n-∑dᵢ-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ
=
x/20+∑uᵢₜ/6pᵢ+∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ+∑5ᵤᵢₜ/pᵢ-0.6-n-∑uᵢ₁/6pᵢ-∑5tᵤᵢₜ/pᵢ-∑dᵢ-∑5tₓᵢₜ
,
至此,其中∑uᵢₜ/6pᵢ≈∑uᵢ₁/6pᵢ,∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ≈∑dᵢ+∑5tₓᵢₜ,
然后对于-∑5tᵤᵢₜ/pᵢ,其最小值为-5n,现在正项只有x/20,负项共还有-0.6-n-5n,
则若哥猜成立,则只要可恒满足x/20>6.5n,
根据素数定理,则当x增大到某一常数时恒有x/20>6.5x/lnx,从而使得哥猜恒成立。
取r(x)=y-h+c=y-H+e=y+∑-qpᵢ(i由1到n,pᵢ由7到pₙ),其中y=(x-12)/20;
又
-qpᵢ=(uᵢₜ+pᵢ²-6pᵢ-x)/6pᵢ+eᵢ₁+dᵢ(tₓᵢₜ-1)(dₓᵢₜ简记为dᵢ),
则∑-qpᵢ=∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-n-∑dᵢ-∑x/6pᵢ,
又x=xᵢₜ+30pᵢ(tₓᵢₜ-1)=xᵢ₁+30(tᵤᵢₜ-1)+30pᵢ(tₓᵢₜ-1)=pᵢ²+uᵢ₁+30(tᵤᵢₜ-1)+30pᵢ(tₓᵢₜ-1),
则∑-x/6pᵢ=-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ+∑5n'ₓᵢₜ,
则有
r(x)=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-0.6-n-∑dᵢ-∑x/6pᵢ
=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ-0.6-n-∑dᵢ-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ+∑5n'ₓᵢₜ
=x/20+∑uᵢₜ/6pᵢ+∑pᵢ/6+∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ-0.6-n-∑dᵢ-∑pᵢ/6-∑uᵢ₁/6pᵢ-∑5(tᵤᵢₜ-1)/pᵢ-∑5tₓᵢₜ
=
x/20+∑uᵢₜ/6pᵢ+∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ+∑5ᵤᵢₜ/pᵢ-0.6-n-∑uᵢ₁/6pᵢ-∑5tᵤᵢₜ/pᵢ-∑dᵢ-∑5tₓᵢₜ
,
至此,其中∑uᵢₜ/6pᵢ≈∑uᵢ₁/6pᵢ,∑eᵢ₁+∑dᵢtₓᵢₜ+∑5n'ₓᵢₜ≈∑dᵢ+∑5tₓᵢₜ,
然后对于-∑5tᵤᵢₜ/pᵢ,其最小值为-5n,现在正项只有x/20,负项共还有-0.6-n-5n,
则若哥猜成立,则只要可恒满足x/20>6.5n,
根据素数定理,则当x增大到某一常数时恒有x/20>6.5x/lnx,从而使得哥猜恒成立。