我们的1.22班吧 关注:7贴子:1,084
  • 5回复贴,共1

【数学家的简介∷珍贵的材料哦】

只看楼主收藏回复

欧拉(1707~1783)  
瑞士数学家, 
英国皇家学会会员。 
    欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作 。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。  
    欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。 



1楼2006-01-23 16:08回复
    阿基米德-希腊数学家、物理学家 
    (传一)阿基米德(约公元前287~212年), 
     阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗 澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中 ,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了 浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。" 
     在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上…… 
     阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。 
    阿基米德生平 
    (传二)阿基米德阿基米德(Archimedes,约前287—212),诞生于希腊叙拉古附近的一个小村庄。他出生于贵族,与叙拉古的赫农王(King Hieron)有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。阿基米德受家庭的影响,从小就对数学、天文学特别是古希腊的几何学产生了浓厚的兴趣。当他刚满十一岁时,借助与王室的关系,被送到埃及的亚历山大里亚城去学习。亚历山大位于尼罗河口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他兼收并蓄了东方和古希腊的优秀文化遗产,在其后的科学生涯中作出了重大的贡献。公元前二一二年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在几何学上的卓越贡献。 阿基米德的成就 
      阿基米德无可争议的是古代希腊文明所产生的最伟大的数学家及科学家,他在诸多科学领域所作出的突出贡献,使他赢得同时代人的高度尊敬。 
      阿基米德求得了抛物线弓形、螺线、圆形的面积和体积以及椭球体、抛物面体等复杂几何体的体积。在推演这些公式的过程中,他熟练的启用了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他还利用此法估算出∏值在 和 之间,并得出了三次方程的解法。面对古希腊繁冗的数字表示方式,阿基米德提出了一套有重要意义的按级计算法,并利用它解决了许多数学难题。   阿基米德在力学方面的成绩最为突出,这些成就主要集中在静力学和流体静力学方面。他在研究机械的过程中,发现了杠杆原理,并利用这一原理设计制造了许多机械。他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律。 
      阿基米德在天文学方面也有出色的成就。他设计了一些圆球,用细绳和木棒将它们联接起来模仿日月和星辰的运动,并利用水力使它们转动。这样日食和月食就可以生动的表现出来了。阿基米德认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。但早在公元前三世纪就提出这样的见解,是很了不起的。   阿基米德的著作很多,作为数学家,他写出了《论球和圆柱》、《论劈锥曲面体与球体》、《抛物线求积》、《论螺线》等数学著作。作为力学家,他著有《论平板的平衡》、《论浮体》、《论杠杆》、《论重心》等力学著作。在《论平板的平衡》中,他系统地论证了杠杆原理。在论浮体中、他论证了浮体定律。 
    


    3楼2006-01-23 16:10
    回复
       阿基米德不仅在理论上成就璀璨,还是一个富有实践精神的工程学家。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的投射器等。被称作“阿基米德举水螺旋”的扬水机是为了将水从大船的船舱中排出而发明的。扬水机可以利用螺旋把搬运到高处,在埃及得到了广泛的应用,是现代螺旋泵的前身。 “给我一个支点,我将移动地球” 
        阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,从而把二者结合起来。在埃及,公元前一千五百年前左右,就有人用杠杆来抬起重物,不过人们不知道它的道理。阿基米德潜心研究了这个现象并发现了杠杆原理。 
        赫农王对阿基米德的理论一向持半信半疑的态度。他要求阿基米德将它们变成活生生的例子以使人信服。阿基米德说:“给我一个支点,我就能移动地球。”国王说:“这恐怕实现不了,你还是来帮我拖动海岸上的那条大船吧。”这条船是赫农王为埃及国王制造的,体积大,相当重,因为不能挪动,搁浅在海岸上已经很多天了。阿基米德满口答应下来。    
       阿基米德设计了一套复杂的杠杆滑轮系统安装在船上,将绳索的一端交到赫农王手上。赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。” 
       金冠之谜 
        赫农王让金匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了银子,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。后来,国王将它交给了阿基米德。阿基米德冥思苦想出很多方法,但都失败了。有一天,他去澡堂洗澡,他一边坐进澡盆里,一边看到水往外溢,同时感到身体被轻轻拖起。他突然恍然大悟,跳出澡盆,连衣服都顾不得穿就直向王宫奔去,一路大声很着“尤里卡”, “尤里卡”(Fureka,我知道了)原来他想到,如果王冠放入水中后,排出的水量不等于同等重量的金子排出的水量,那肯定是掺了别的金属。这就是有名的浮力定律,既浸在液体中的物体受到向上的浮力,其大小等于物体所排出液体的重量。后来,该定律就被命名为阿基米德定律。 
       爱国者阿基米德 
        在阿基米德晚年时,罗马军队入侵叙拉古,阿基米德指导同胞们制造了很多攻击和防御的武器。当侵略军首领马塞勒塞率众攻城时,他设计的投石机把敌人打得哭爹喊娘。他制造的铁爪式起重机,能将敌船提起并倒转,抛至大海深处。传说他还率领叙拉古人民制作了一面大凹镜,将阳光聚焦在靠近的敌船上,使它们焚烧起来。罗马士兵在这频频的打击中已经心惊胆战,草木皆兵,一见到有绳索或木头从城里扔出,他们就惊呼“阿基米德来了”,随之抱头鼠窜。罗马军队被阻入城外达三年之久。最终,于公元前二一二年,罗马人趁叙拉古城防务稍有松懈,大举进攻闯入了城市。此时,阿基米德正在潜心研究一道深奥的数学题,一个罗马士兵闯入,用脚践踏他所画的图形,阿基米德愤怒地与之争论,残暴的士兵哪里肯听,只见他举刀一挥,一位璀璨的科学巨星就此陨落。 
      (传三)阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 
         后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。 
      


      4楼2006-01-23 16:10
      回复
         
         《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 
          《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:3.1415926<π<3.1415927,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。 
          《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的“阿基米德公理”。 
          《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:“任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。”他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 
          《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。 
          《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。 
          《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。 
          《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。 
          丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 
          正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。


        5楼2006-01-23 16:10
        回复
          高斯(1777~1855) 
          德国数学家、物理学家和天文学家, 
          英国皇家学会会员。 
           高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的<<算术研究>>,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。 
           高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。


          6楼2006-01-23 16:12
          回复
            祖冲之,字文远,范阳郡遒县(今河北涞源)人。公元429年生于建康(今江苏南京)一个官宦人家,虽原籍北方,但几代祖先都在江南做官且通晓历法。祖父掌管土木工程建筑,父亲也学识渊博。他从小有机会接受家传科学知识,青年时代进入专门研究学术的华林学省学习研究。祖冲之曾作过州从事史,公府参军,县令,最高官至长水校尉,享受四品俸禄,公元500年去世。 

            祖冲之是中国古代一位伟大的数学家和天文学家,生平著作很多,内容也是多方面的。在数学方面的论著,不幸均已失传。在历代国内外的各种图书目录中,可以见到他所写的数学著作的书名有“缀术”6卷,“九章算术义注”9卷,“重差注”1卷。在天文历法方面,他编制成“大明历”,并为大明历写了“驳议”。在古代典籍的注释方面,祖冲之有“易义”、“老子义”、“庄子易”、“释论语”、“释孝经”等著作,但亦均失传。文学作品方面他著有“述异记”10卷,在“太平御览”等书中可以看到这部著作的片断。 

            从青年时起,祖冲之便对天文学和数学发生了兴趣。他把从上古时起直至他生活时代的各种文献、记录、资料,几乎全部搜罗来进行研究,并且亲自进行精密的测量和仔细的推算。正像他自己所说的那样,“亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策”。他对刘歆、张衡、郑玄、阚译、王番、刘徽等科学家的工作进行了仔细研究,一一驳正了他们的错误,导出了许多极有价值的结果。准确到7位有效数学的园周率数值便是人所共知的例子。 

            园周率π的计算,标志着一个国家和民族的数学水平。中国古代也和世界上任何文化开发较早的国家和地区一样,人们最早使用的园周率是3。这一误差很大的数值一直沿用到汉代。入汉以后,对园周率的改进吸引了不少科学家的注意,都作了一些工作。最为重要的是魏晋时期的数学家刘徽,他用“割园术”计算出的园周率为3.14。 

            关于祖冲之在园周率方面的工作,其史料仅见于《隋书·律历志》中还记载说,祖冲之还给出了园周率的两个近似分数值: 

            密率:π=355/113,小数点后6位准确, 
            约率:π=22/7,小数点后2位准确。 

            在欧洲,1100多年后才算得355/113这一数值,被称为“安东尼兹率”。日本数学家三上义夫在1912年提出应称π=355/113为“祖率”。 

            关于祖冲之是如何算得如此精密的结果,没有任何史料流传下来,这是非常遗憾的。不过根据当时的情况判断,祖冲之用的仍是刘徽的“割园术”。果真如此的话,祖冲之需要计算出园内接正12288边形和正24576边形的面积,要进行加、减、乘、除、开方等运算达130次以上,每次运算都要精确到9位数字,可以想象,在当时用罗列算筹来计算,是需要何等的精心与超人的毅力。 关于球体体积的计算,是祖冲之及其儿子祖(日桓)在数学方面又一项了不起的成就。祖氏父子根据刘徽在“九章算术注”中担出的正确方法,求得了球体体积公式 

            球体积=4/3πγ3。 

            在导出球体积公式的过程中,祖氏父子总结出了所谓的“祖氏原理”。在西方这一原理被称为“卡瓦列里原理”,但它的发现者意大利数学家卡瓦列里(B.Cavalieri 1598~1647)比祖氏父子要晚1100多年。 

            祖冲之在天文历法方面的成就,大都包含在他所编制的大明历和为大明历所写的“驳议”中。祖冲之通过精密的观察测量,发现当时奉行的由前辈著名天文学家何承天所编制的元嘉历有不少错误,于是着手编制大明历,公元462年编成,时年只有33岁。祖冲之对历法的编制做出了很多创造性的贡献,大明历是这个时代一部最好的历法,但是却遭到皇旁宠臣的反对。直到祖冲之死后10年,由于他儿子祖(日桓)的坚决请求,经过实际天象的校验,大明历才得以正式颁行。 
            东汉时期,也就是距今约一千八百多年前(公元117年),一台利用水力推动运转的大型天文仪器――“水运浑象”在东汉的京都洛阳制造成功。相隔二十年后(公元138年),安置在京都洛阳的又一台仪器――“候风地动仪”,准确地报告了西方千里之外发生的地震。这标志着人类开始了用仪器记录研究地震的新纪元。


            7楼2006-01-23 16:14
            回复