〖若1〗f4(n) = (2*15*20*5)ⁿ+(11*1*16*14)ⁿ+(6*10*19*7)ⁿ+(2*11*12*17)ⁿ+(5*10*9*18)ⁿ+(3*19*4*16)ⁿ+(13*3*15*11)ⁿ+(8*4*10*20)ⁿ+(18*1*6*17)ⁿ+(2*18*8*14)ⁿ+(1*9*19*13)ⁿ+(7*3*20*12)ⁿ+(14*4*9*15)ⁿ+(12*6*16*8)ⁿ+(17*5*13*7)ⁿ = 3000ⁿ+2464ⁿ+7980ⁿ+4488ⁿ+8100ⁿ+3648ⁿ+6435ⁿ+6400ⁿ+1836ⁿ+4032ⁿ+2223ⁿ+5040ⁿ+7560ⁿ+9216ⁿ+7735ⁿ
〖又1〗g4(n) = (19*6*1*16)ⁿ+(10*20*5*7)ⁿ+(15*11*2*14)ⁿ+(19*10*9*4)ⁿ+(16*11*12*3)ⁿ+(18*2*17*5)ⁿ+(8*18*6*10)ⁿ+(13*17*11*1)ⁿ+(3*20*15*4)ⁿ+(19*3*13*7)ⁿ+(20*12*2*8)ⁿ+(14*18*1*9)ⁿ+(7*17*12*6)ⁿ+(9*15*5*13)ⁿ+(4*16*8*14)ⁿ = 1824ⁿ+7000ⁿ+4620ⁿ+6840ⁿ+6336ⁿ+3060ⁿ+8640ⁿ+2431ⁿ+3600ⁿ+5187ⁿ+3840ⁿ+2268ⁿ+8568ⁿ+8775ⁿ+7168ⁿ
【则1】当 n = 0,1,2,3 时,f4(n) = g4(n)
其中,当 n = 0 时,f4(0) = 15 = g4(0);当 n = 1 时,f4(1) = 80157 = g4(1);当 n = 2 时,f4(2) = 512070699 = g4(2);当 n = 3 时,f4(3) = 3637500413745 = g4(3)。
〖又1〗g4(n) = (19*6*1*16)ⁿ+(10*20*5*7)ⁿ+(15*11*2*14)ⁿ+(19*10*9*4)ⁿ+(16*11*12*3)ⁿ+(18*2*17*5)ⁿ+(8*18*6*10)ⁿ+(13*17*11*1)ⁿ+(3*20*15*4)ⁿ+(19*3*13*7)ⁿ+(20*12*2*8)ⁿ+(14*18*1*9)ⁿ+(7*17*12*6)ⁿ+(9*15*5*13)ⁿ+(4*16*8*14)ⁿ = 1824ⁿ+7000ⁿ+4620ⁿ+6840ⁿ+6336ⁿ+3060ⁿ+8640ⁿ+2431ⁿ+3600ⁿ+5187ⁿ+3840ⁿ+2268ⁿ+8568ⁿ+8775ⁿ+7168ⁿ
【则1】当 n = 0,1,2,3 时,f4(n) = g4(n)
其中,当 n = 0 时,f4(0) = 15 = g4(0);当 n = 1 时,f4(1) = 80157 = g4(1);当 n = 2 时,f4(2) = 512070699 = g4(2);当 n = 3 时,f4(3) = 3637500413745 = g4(3)。