NASA开发仅需数十毫克燃料的反物质飞船(图)
--------------------------------------------------------------------------------
http://www.sina.com.cn 2006年04月19日 10:48 新浪科技
美国宇航局正电子飞船概念图
美国宇航局正在开发的正电子发动机艺术概念图
据美国宇航局网站14日报道,科幻故事中大多数飞船都是用反物质作为燃料,原因就是反物质是已知最有效的燃料。若要实现人类载人火星探索的伟大梦想,我们需要数吨化学
燃料,相反,若使用反物质,则仅需数十毫克。然而,事实上,这种动力的诞生也伴随着代价。有些反物质的反应会生成大量高能伽马射线。伽马射线就如同照射在类固醇上的X光一样,它们能穿透物质,分解细胞内分子,因此,它们会对人体有害。另外,高能伽马射线由于会使制造发动机材料的原子破裂,会让发动机本身也具有放射性。
美国正在开发反物质飞船
美宇航局(NASA)先进概念研究所(NIAC)正在资助一个研究小组从事将反物质作为未来飞船燃料的开发工作,这种飞船会生成低能伽马射线,从而避免了射线产生的副作用。
反物质有时也被称为常规物质的镜像,因为虽然它们看上去与普通物质没什么区别,但反物质的一些特性是颠倒的。例如,正常电子(携带有从手机到等离子电视等所有物体上电流的常见粒子)有负电荷。正电子(Anti-electron)则具有正电荷,所以,科学家称其为“正电子”。当反物质同物质相遇时,二者会以瞬间能量湮灭。这种能量转化过程也正是反物质如此强大的奥秘所在。即便是为原子弹提供动力的核反应也比这种能量转化慢,且只有其质量的3%转化成能量。
此前的反物质动力飞船设计所采用的是反质子,反质子在湮灭时能产生高能伽马射线。新设计将采用正电子,这将使伽马射线的能量是原来的四百分之一。先进概念研究所目前展开的工作只是初步研究,旨在证实上述方案是否具有可行性。倘若前景广阔,先进概念研究所就可以吸收足够资金成功开发该技术,正电子动力飞船将比现有载人火星探索计划(称为“火星意义任务”)具有更多优势。
反物质飞船优势多多
美国新墨西哥州圣大菲正电子研究公司(Positronics Research)杰拉尔德·史密斯博士说:“最为显著的优势是正电子动力飞船具有更高的安全性”。目前的火星参数任务(Mars Reference Mission)要求核反应堆将飞船推进至火星。这种方式之所以值得期待,是因为核动力推进可以减少飞船到达火星的时间,这样一来,由于宇航员暴露于宇宙射线的时间减少,从而提高了安全性。此外,化学动力飞船要重得多,且发射成本也更为昂贵。核反应堆也需提供够执行三年探测任务的充足动力。但是,核反应堆性质复杂,所以在执行任务过程中更有可能发生一些潜在危险。作为领导先进概念研究所反物质飞船研究的科学家,史密斯博士 说:“正电子反应堆在能提供相同优势的前提下,运作起来也要相对简单。”
同时,核反应堆即使在燃料用尽后仍带有放射性。当飞船到达火星后,“火星意义任务”的计划是指引反应堆进入百万年都不会与地球相遇的一条轨道,那时,残留辐射将降低至安全水平。相反,据反物质飞船设计小组介绍,正电子反应堆在燃料用尽之后也不具有任何残留辐射,因而,即便是废弃的正电子反应堆意外落到地球,人们也不必担心存在安全隐患。
--------------------------------------------------------------------------------
http://www.sina.com.cn 2006年04月19日 10:48 新浪科技
美国宇航局正电子飞船概念图
美国宇航局正在开发的正电子发动机艺术概念图
据美国宇航局网站14日报道,科幻故事中大多数飞船都是用反物质作为燃料,原因就是反物质是已知最有效的燃料。若要实现人类载人火星探索的伟大梦想,我们需要数吨化学
燃料,相反,若使用反物质,则仅需数十毫克。然而,事实上,这种动力的诞生也伴随着代价。有些反物质的反应会生成大量高能伽马射线。伽马射线就如同照射在类固醇上的X光一样,它们能穿透物质,分解细胞内分子,因此,它们会对人体有害。另外,高能伽马射线由于会使制造发动机材料的原子破裂,会让发动机本身也具有放射性。
美国正在开发反物质飞船
美宇航局(NASA)先进概念研究所(NIAC)正在资助一个研究小组从事将反物质作为未来飞船燃料的开发工作,这种飞船会生成低能伽马射线,从而避免了射线产生的副作用。
反物质有时也被称为常规物质的镜像,因为虽然它们看上去与普通物质没什么区别,但反物质的一些特性是颠倒的。例如,正常电子(携带有从手机到等离子电视等所有物体上电流的常见粒子)有负电荷。正电子(Anti-electron)则具有正电荷,所以,科学家称其为“正电子”。当反物质同物质相遇时,二者会以瞬间能量湮灭。这种能量转化过程也正是反物质如此强大的奥秘所在。即便是为原子弹提供动力的核反应也比这种能量转化慢,且只有其质量的3%转化成能量。
此前的反物质动力飞船设计所采用的是反质子,反质子在湮灭时能产生高能伽马射线。新设计将采用正电子,这将使伽马射线的能量是原来的四百分之一。先进概念研究所目前展开的工作只是初步研究,旨在证实上述方案是否具有可行性。倘若前景广阔,先进概念研究所就可以吸收足够资金成功开发该技术,正电子动力飞船将比现有载人火星探索计划(称为“火星意义任务”)具有更多优势。
反物质飞船优势多多
美国新墨西哥州圣大菲正电子研究公司(Positronics Research)杰拉尔德·史密斯博士说:“最为显著的优势是正电子动力飞船具有更高的安全性”。目前的火星参数任务(Mars Reference Mission)要求核反应堆将飞船推进至火星。这种方式之所以值得期待,是因为核动力推进可以减少飞船到达火星的时间,这样一来,由于宇航员暴露于宇宙射线的时间减少,从而提高了安全性。此外,化学动力飞船要重得多,且发射成本也更为昂贵。核反应堆也需提供够执行三年探测任务的充足动力。但是,核反应堆性质复杂,所以在执行任务过程中更有可能发生一些潜在危险。作为领导先进概念研究所反物质飞船研究的科学家,史密斯博士 说:“正电子反应堆在能提供相同优势的前提下,运作起来也要相对简单。”
同时,核反应堆即使在燃料用尽后仍带有放射性。当飞船到达火星后,“火星意义任务”的计划是指引反应堆进入百万年都不会与地球相遇的一条轨道,那时,残留辐射将降低至安全水平。相反,据反物质飞船设计小组介绍,正电子反应堆在燃料用尽之后也不具有任何残留辐射,因而,即便是废弃的正电子反应堆意外落到地球,人们也不必担心存在安全隐患。