病毒学吧 关注:377贴子:680
  • 4回复贴,共1

关于病毒学得深度解析详情课件

只看楼主收藏回复

一楼


IP属地:河南1楼2022-12-13 16:32回复
    CADD(Computer Aided Drug Design):计算机辅助药物设计,依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的相互作用,考察药物与靶点的结构互补、性质互补等,设计出合理的药物分子。它是设计和优化先导化合物的方法,CADD的应用,包括基于结构的药物设计(SBDD)、基于配体的药物设计(LBDD)、高通量虚拟筛选(HTVS)等技术,突破了传统的先导物发现模式,极大地促进了先导化合物发现和优化。特别是在食品、生物、化学、医药、植物、疾病方面应用广泛!靶点的发现与确证是现代新药研发的第一步,也是新药创制过程中的瓶颈之一。CADD的应用可以加快靶点发现的速度,提高靶点发现的准确度,从而推进新药研发。
    AIDD(AIDrug Discovery & Design):是近年来非常火热的技术应用,且已经介入到新药设计到研发的大部分环节当中,为新药发现与开发带来了极大的助力。随着医药大数据的积累和人工智能技术的发展,运用AI技术并结合大数据的精准药物设计也不断推动着创新药物的发展。在新型冠状病毒的治疗方案中,通过一系列计算机辅助药物生物计算的方法发现一大类药物分子可以有效阻止新冠病毒的侵染,为治疗新冠提供了新思路。倾向于机器对数据库信息的自我学习,可以对数据进行提取和学习,一定程度上避免了化合物设计过程中的试错路径,同时还会带来很多全新的结构,为药物发现打破常规的结构壁垒。
    培训目标(完全适合零基础)
    CADD计算机辅助药物设计设计流程,让学员能够掌握包括PDB数据库、靶点蛋白、蛋白质-配体、蛋白-配体小分子、蛋白-配体结构、notepad的介绍和使用、分子对接、蛋白-配体对接、虚拟筛选、蛋白-蛋白对接、蛋白-多糖分子对接、蛋白-水合对接、Linux安装、gromacs分子动力学全程实操、溶剂化分子动力学模拟
    AIDD人工智能药物发现与设计流程,让学员能够掌握包括配体人工智能药物发现(AIDD)简介、基于结构的药物发现与设计、基于配体的药物发现与设计、常用工具的介绍与安装(Anaconda3、Pandas、NumPy、RDKit、scikit-learn、Pytorch、Tensorflow、DeepChem)基于配体结构的药物发现——分类任务、模型评估方法、分类模型的常用评价指标、变量筛选、参数格点搜索、基于配体结构的药物发现——回归任务、深度学习与药物发现、分子生成模型
    本课程适于对深度学习、基因组学、转录组学、蛋白组学、药物基因组学等多组学分析感兴趣的学员。课程通过基础入门+应用案例实操演练的方式,从初学及应用研究的角度出发,带大家实战演练多种深度学习模型(深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN、可变自动编码器VAE、图卷积神经网络GCN)在基因组学分析中的各种应用:识别G4基序特征DeepG4,识别非编码基因突变DeepSEA,预测染色体亲和性Basset,预测基因表达eQTL的Enformer、识别拷贝数变异DeepCNV、预测调控因子DeepFactor、预测premiRNA的dnnmiRNA、从基因表达数据中识别乳腺癌分型DeepType、从高维多组学数据中识别疾病表型XOmiVAE、从基因序列及蛋白质相互作用网络中识别关键基因DeepHE、联合肿瘤基因标记及药物分子结构预测药物反应机制的SWnet等深度学习工具。通过对这些深度学习在基因组学中的应用案例进行深度讲解和实操,让学员能够掌握深度学习分析高维基因组学、转录组学、蛋白组学等多组学数据流程,系统学习深度学习及基因组学理论知识及熟悉软件代码实操,熟练掌握这些前沿的分析工具的使用以及研究创新深度学习算法解决生物学及临床疾病问题与需求。
    详情链接https://mp.weixin.qq.com/s/9KHpJGx_FZX8JOYQW1ZudA


    IP属地:河南2楼2022-12-13 16:33
    回复
      详情关注公众号:科研前线社


      IP属地:河南来自Android客户端4楼2023-02-13 10:33
      回复
        1


        IP属地:河南来自Android客户端5楼2023-02-15 14:21
        回复
          有试看视频


          IP属地:河南来自Android客户端6楼2023-03-02 21:39
          回复