81式的雷达-导弹控制回路采用了瞄准线指令制导体制,这种制导体制很适于近程低空防空导弹,其优点是弹上的制导系统构成简单,弹道算法外推复杂程度比其他形式低,由此弹上设备量也可以下降,便于实现多传感器复合制导。当81式导弹发射后由弹上自动驾驶仪按预定飞行程序控制先爬升飞行,同时相控阵雷达也为导弹提供目标信息,当导弹具备一定高度速度后,红外导引头启动开始捕捉目标,当跟踪上目标后,由导引头提供信息,另外相控阵雷达的信息也输入到自动驾驶仪中进行数据融合,最后得出目标的真实方位。
81式的发射装置采用四联装发射架。发射装置由两个可同轴俯仰的矩形架组成,每个矩形架的上、下各有条导轨,每条导轨上装一枚待发导弹。矩形架的前端各有两个红外导引头护罩。发射架装在可旋转360度的平台上,位于导弹发射车的车体后部。发射架借助车体两侧的液压装弹机进行装弹,先由人工把导弹放在装弹机上,然后起动液压装弹机将导弹装填到位,总装弹时间共约3分钟。作战时,发射架与跟踪雷达同步。在采用光学瞄准具跟踪目标时,发射架与主瞄准具随动。
81式的火控、制导系统的核心是装备相控阵雷达的火控车,它能同时跟踪和处理6批目标,并将所产生的各种数据通过两对野战电话线以数字形式传送给导弹发射车。这一切在今天看来平白无奇,但倒退回去30年在研制时可绝对是世界一流水平。相控阵雷达阵面不大,因此没有采用美苏的爱国者、S-300上的具有独创性的空间馈电方式,而沿用了以往的辐射器馈电,波导和喇叭口等在阵面背后,也就是说,日本人实际上是将以往雷达的抛物面或卡塞格隆天线换成了铁氧体移相器阵面,这样实现相控阵技术难度不大、研制进度快,而且由于天线阵面小,波长选取在5厘米波段,铁氧体的数目也不多,这又降低了制造和调试难度,也减少了成本,提高了经济性。就是这样的精打细算,日本才能够成为第三个将相控阵雷达技术投入实际防空导弹型号的国家,而且至今为止,81式是第一个也是唯一在近程防空导弹系统上运用相控阵技术的。由此可见日本工业体系的巨大战争潜力。
81式有全自动和半自动两种工作状态,不过由于日本工业自动化水平处于世界领先地位,因此其一般在全自动状态下进行战斗,由此甚至导致过部分陆自官兵进行考核时,在半自动状态下显得行动缓慢、无所适从,陆自曾经专门为此事进行过“整肃”,这虽然反映的是训练情况,但从一个侧面也可见81式的技术水平。另外由于日本陆自常和美军联合进行靶试演习,当81式首次在美军防空炮兵的军官和技术人员面前亮相时,他们都无不对其高于爱国者的自动化程度表示佩服。
81式的火控计算机和作战系统是东芝公司在美国IBM公司指导下完成的,中央处理器运算速度达到了700万次/秒,这在当时是非常了不起的成就。在高速的计算机帮助下,系统实现了空域管制、空情判断、目标搜索、敌我识别、威胁评估、目标分配、跟踪和火控的全自动化。高性能的硬件加上良好的作战软件和人机界面配合使得系统反应时间只有5秒,只需一名操作员就可完成作战任务。火控计算机配有大容量软件包,能自动对所有空情信息进行处理,可同时处理来自搜索雷达的20个被监视目标的数据,并从中选择和跟踪8个威胁最大的目标,发射装置的转动、导弹发射顺序控制以及采用多传感器制导的最佳制导方式选择都由计算机实施。当武器系统处于全自动作战状态时,从目标探测到杀伤效果评估的全过程都无需外部的介入而自动完成。在计算机的控制下,该系统自动完成目标的搜索、分析、评估和识别、攻击目标的选择、对目标的跟踪及参数计算、导弹的选择、发射与制导及杀伤评估装置的启动。