lim(x->0) ∫(0->x) (tsint+(tant)^3.lnt) dt / { cosx.∫(0->x) [ln(1+t)]^2 dt }
=lim(x->0) ∫(0->x) (tsint+(tant)^3.lnt) dt / ∫(0->x) [ln(1+t)]^2 dt
=lim(x->0) ∫(0->x) (tsint+(tant)^3.lnt) dt / ∫(0->x) t^2 dt
=lim(x->0) ∫(0->x) (tsint+(tant)^3.lnt) dt / [(1/3)x^3]
洛必达
=lim(x->0) [xsinx+(tanx)^3.lnx] / x^2
= 1+lim(x->0) (tanx)^3.lnx / x^2
=1+0
=1